General Information of MIC (ID: MIC01140)
MIC Name Ruminococcus sp. (firmicutes)
Body Site Gut
Lineage Kingdom: Bacteria
Phylum: Firmicutes
Class: Clostridia
Order: Clostridiales
Family: Ruminococcaceae
Genus: Ruminococcus
Species: Ruminococcus sp.
Oxygen Sensitivity Obligate anaerobe
Microbial Metabolism Saccharolytic; Fermentative; Utilize hydrogen as energy source
Gram Structurally positive but stains negative
Host Relationship Commensal
Description Ruminococcus is a genus of bacteria in the class Clostridia. They are anaerobic, saccharolytic, fermentative, Gram-positive gut microbes.
External Links Taxonomy ID
41978
GOLD Organism ID
Go0003380
Disease Relevance
          Chagas disease  [ICD-11: 1F53]
             Description Ruminococcaceae was associated with chagas disease. [1]
          Non-alcoholic fatty liver disease  [ICD-11: DB92]
             Description Ruminococcus was associated with nonalcoholic fatty liver disease. [2]
          Ulcerative colitis  [ICD-11: DD71]
             Description The differences at the phylum level between the Ulcerative colitis and Familial adenomatous polyposis cohorts corresponded to significant increases in the levels of the proteobacterial families Comamonadaceae, Moraxellaceae and Alcaligenaceae in tandem with a significant reduction in the Bacteroidetes families Bacteroidaceae and Prevotellaceae and the Firmicutes family Ruminococcaceae in Ulcerative colitis. [3]
Host Genetic Factors (HGFs)
          C4B
             HGF ID HGF2348 HGF Info       Class Copy Number Variation: Gene Duplication (CNV-GDu)
             Description The low C4B-CN has been significantly associated with the high abundance of Ruminococcus (p-value<0.05). [4]
          15q11-13
             HGF ID HGF2318 HGF Info       Class Copy Number Variation: Gene Duplication (CNV-GDu)
             Description There has a significantly different abundance of Ruminococcus sp. between 15q dup mice and wide type littermates (p-value=0.0453). [5]
          KLB
             HGF ID HGF2334 HGF Info       Class Copy Number Variation: Gene Deletion (CNV-GDe)
             Description The deletion of KLB reduced the proportion of Ruminococcus. [6]
          TLR2
             HGF ID HGF2319 HGF Info       Class Copy Number Variation: Gene Deletion (CNV-GDe)
             Description The deletion of TLR2 increased the abundance of Ruminococcus. [7]
          AMY1A
             HGF ID HGF2311 HGF Info       Class Copy Number Variation: Gene Duplication (CNV-GDu)
             Description Gut microbiome Ruminococcus differs between high AMY1-CN and low AMY1-CN groups at the OTU Level (p-value<0.05). [8]
          TNFSF15
             HGF ID HGF2324 HGF Info       Class Copy Number Variation: Gene Deletion (CNV-GDe)
             Description The deletion of TNFSF15 is significantly associated with the abundance of Ruminococcaceae bacterium (p-value=3.32E-05). [9]
          MUC2
             HGF ID HGF2331 HGF Info       Class Copy Number Variation: Gene Deletion (CNV-GDe)
             Description The deletion of MUC2 showed significantly increased abundance of Ruminococcaceae (p-value<0.05). [10]
          SLC15A1
             HGF ID HGF2354 HGF Info       Class Copy Number Variation: Gene Deletion (CNV-GDe)
             Description The deletion of PepT1 could decrease the abundance of Ruminococcaceae. [11]
          NLRP3
             HGF ID HGF2355 HGF Info       Class Copy Number Variation: Gene Deletion (CNV-GDe)
             Description The deletion of NLRP3 could significantly increase the abundance of Ruminococcus (p-value<0.01). [12]
          hsa-miR-146a-5p
             HGF ID HGF0252 HGF Info       Class Non-coding RNA: Micro (ncRNA-miRNA)
             Description The deletion of miR-146an increased the abundance of Ruminococcaceae. [13]
          hsa-miR-204-5p
             HGF ID HGF0207 HGF Info       Class Non-coding RNA: Micro (ncRNA-miRNA)
             Description The vascular microRNA-204 (miR-204) expression is significantly downregulated by Ruminococcus (p-value<0.05). [14]
          rs7156837
             HGF ID HGF1302 HGF Info       Class Single Nucleotide Polymorphism: Intron variant (SNP-IV)
             Description The rs7156837 SNP was significantly associated with the abundance of Ruminococcus (p-value=1.95E-07). [15]
          rs4889839
             HGF ID HGF1358 HGF Info       Class Single Nucleotide Polymorphism: Intron variant (SNP-IV)
             Description The rs4889839 SNP was significantly associated with the abundance of Ruminococcus (p-value=6.06926E-07). [9]
          rs4460847
             HGF ID HGF2229 HGF Info       Class Single Nucleotide Polymorphism (SNP)
             Description The rs4460847 SNP was significantly associated with the abundance of Ruminococcus (p-value=0.03505). [16]
          rs11845652
             HGF ID HGF1347 HGF Info       Class Single Nucleotide Polymorphism: Intron variant (SNP-IV)
             Description The rs11845652 SNP was significantly associated with the abundance of Ruminococcus (p-value=7.79E-08). [15]
          rs7134375
             HGF ID HGF1645 HGF Info       Class Single Nucleotide Polymorphism: Non coding transcript variant (SNP-NCTV)
             Description The rs7134375 SNP was significantly associated with the abundance of Ruminococcaceae(p-value=6.70E-05 ). [17]
          rs60719569
             HGF ID HGF1411 HGF Info       Class Single Nucleotide Polymorphism: Intron variant (SNP-IV)
             Description The rs60719569 SNP was significantly associated with the abundance of Ruminococcaceae bacterium (p-value<1.00E-08). [18]
          rs4968435
             HGF ID HGF2171 HGF Info       Class Single Nucleotide Polymorphism (SNP)
             Description The rs4968435 SNP was significantly associated with the abundance of Ruminococcaceae (p-value=4.02E-06). [15]
          rs206196
             HGF ID HGF2000 HGF Info       Class Single Nucleotide Polymorphism (SNP)
             Description The rs206196 SNP was significantly associated with the abundance of Ruminococcaceae (p-value=9.10E-08). [15]
          rs1800795
             HGF ID HGF1720 HGF Info       Class Single Nucleotide Polymorphism: Intron variant (SNP-IV)
             Description The variant gene IL-6 of innate immunity rs1800795 is significantly associated with the abundance of gut micriobiota Ruminococcaceae (p-value<0.0001). [19]
          rs1346183
             HGF ID HGF1613 HGF Info       Class Single Nucleotide Polymorphism: Intron variant (SNP-IV)
             Description The rs1346183 SNP was significantly associated with the abundance of Ruminococcaceae (p-value=3.21E-08). [15]
          rs10128711
             HGF ID HGF1318 HGF Info       Class Single Nucleotide Polymorphism: Intron variant (SNP-IV)
             Description The rs10128711 SNP was significantly associated with the abundance of Ruminococcaceae (p-value=9.78E-05 ). [17]
Host Immune Factors (HIFs)
          Programmed death-ligand 1
             HIF ID HIFM0189 HIF Info       Class Checkpoint molecule (CM)
             Description The response to anti-PD-L1 therapy significantly correlated with fecal transplantations from patients abundant in Ruminococcaceae family. [20]
          Neutrophils
             HIF ID HIFC0029 HIF Info       Class Granulocytes (Gra)
             Description Ruminococcus spp. at neutrophil recovery was negatively correlated with subsequent acute severe graft-versus-host disease. [21]
          Immunoglobulin M
             HIF ID HIFM0266 HIF Info       Class Immunoglobulin (Ig)
             Description The abundance of Ruminococcaceae was associated with IgM response. [22]
          Immunoglobulin G
             HIF ID HIFM0270 HIF Info       Class Immunoglobulin (Ig)
             Description The abundance of Ruminococcaceae was associated with IgM response. [22]
          Immunoglobulin A
             HIF ID HIFM0272 HIF Info       Class Immunoglobulin (Ig)
             Description Ruminococcus was significantly enriched in the IgA (Low or no IgA binding) consortia. [23]
          Immunoglobulin E
             HIF ID HIFM0271 HIF Info       Class Immunoglobulin (Ig)
             Description IgE immune responses was associated with Ruminococcaceae. [24]
          CD16+ Natural Killer cells
             HIF ID HIFC0094 HIF Info       Class Natural killer cells (NKCs)
             Description The increased proportion of CD16+ NK cells was associated with the decrease of gut commensal bacteria(Ruminococcus). [25]
          Regulatory T cells
             HIF ID HIFC0030 HIF Info       Class T cells (TCs)
             Description Ruminococcus is associated with regulatory T cells responses. [26]
          T helper type 17 cells
             HIF ID HIFC0080 HIF Info       Class T cells (TCs)
             Description Ruminococcus is associated with T helper type 17(Th17)cells responses. [26]
          T-cell surface glycoprotein CD4
             HIF ID HIFM0050 HIF Info       Class T-cell receptor (TCR)
             Description The stool of HIV-infected patients with high CD4 counts were enriched for traditional gastrointestinal genera Ruminococcus(false discovery rate q < 0.05, read difference 100 reads, and presence in 50%). [27]
Environmental Factor(s)
             Disbiome ID
      132
             gutMDisorder ID
      gm0593
References
1 Experimental Chagas disease-induced perturbations of the fecal microbiome and metabolome. PLoS Negl Trop Dis. 2018 Mar 12;12(3):e0006344. doi: 10.1371/journal.pntd.0006344. eCollection 2018 Mar.
2 Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep. 2018 Jan 23;8(1):1466. doi: 10.1038/s41598-018-19753-9.
3 The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing. Ann Surg. 2010 Jul;252(1):90-8. doi: 10.1097/SLA.0b013e3181e3dc8b.
4 C4B gene influences intestinal microbiota through complement activation in patients with paediatric-onset inflammatory bowel disease.Clin Exp Immunol. 2017 Dec;190(3):394-405. doi: 10.1111/cei.13040. Epub 2017 Sep 25.
5 Altered microbiota composition reflects enhanced communication in 15q11-13 CNV mice.Neurosci Res. 2019 Dec 18:S0168-0102(19)30671-6. doi: 10.1016/j.neures.2019.12.010. Online ahead of print.
6 -Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue.JCI Insight. 2017 Apr 20;2(8):e91809. doi: 10.1172/jci.insight.91809. eCollection 2017 Apr 20.
7 Microbiota determines insulin sensitivity in TLR2-KO mice.Life Sci. 2019 Oct 1;234:116793. doi: 10.1016/j.lfs.2019.116793. Epub 2019 Aug 26.
8 Human Salivary Amylase Gene Copy Number Impacts Oral and Gut Microbiomes.Cell Host Microbe. 2019 Apr 10;25(4):553-564.e7. doi: 10.1016/j.chom.2019.03.001.
9 Whole exome sequencing analyses reveal gene-microbiota interactions in the context of IBD.Gut. 2020 Jul 10:gutjnl-2019-319706. doi: 10.1136/gutjnl-2019-319706. Online ahead of print.
10 The Dynamic Changes of Gut Microbiota in Muc2 Deficient Mice.Int J Mol Sci. 2018 Sep 18;19(9):2809. doi: 10.3390/ijms19092809.
11 Impact of PepT1 deletion on microbiota composition and colitis requires multiple generations.NPJ Biofilms Microbiomes. 2020 Jul 21;6(1):27. doi: 10.1038/s41522-020-0137-y.
12 Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2.Microbiome. 2019 Aug 22;7(1):116. doi: 10.1186/s40168-019-0733-3.
13 AhR Activation by TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) Attenuates Pertussis Toxin-Induced Inflammatory Responses by Differential Regulation of Tregs and Th17 Cells Through Specific Targeting by microRNA. Al-Ghezi ZZ, Singh N, Mehrpouya-Bahrami P, Busbee PB, Nagarkatti M, Nagarkatti PS.. Front Microbiol. 2019 Oct 18;10:2349. doi: 10.3389/fmicb.2019.02349. eCollection 2019.
14 The importance of interaction between MicroRNAs and gut microbiota in several pathways. Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD.. Microb Pathog. 2020 Jul;144:104200. doi: 10.1016/j.micpath.2020.104200. Epub 2020 Apr 11.
15 Genetic Determinants of the Gut Microbiome in UK Twins.Cell Host Microbe. 2016 May 11;19(5):731-43. doi: 10.1016/j.chom.2016.04.017.
16 FUT2 genotype and secretory status are not associated with fecal microbial composition and inferred function in healthy subjects.Gut Microbes. 2018 Jul 4;9(4):357-368. doi: 10.1080/19490976.2018.1445956. Epub 2018 Apr 27.
17 The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids.Circ Res. 2015 Oct 9;117(9):817-24. doi: 10.1161/CIRCRESAHA.115.306807. Epub 2015 Sep 10.
18 Host genetic variation and its microbiome interactions within the Human Microbiome Project.Genome Med. 2018 Jan 29;10(1):6. doi: 10.1186/s13073-018-0515-8.
19 Variants in genes of innate immunity, appetite control and energy metabolism are associated with host cardiometabolic health and gut microbiota composition.Gut Microbes. 2020 May 3;11(3):556-568. doi: 10.1080/19490976.2019.1619440. Epub 2019 Jun 3.
20 The gut microbiome and response to immune checkpoint inhibitors: preclinical and clinical strategies.Clin Transl Med. 2019 Mar 18;8(1):9. doi: 10.1186/s40169-019-0225-x.
21 Stool Microbiota at Neutrophil Recovery Is Predictive for Severe Acute Graft vs Host Disease After Hematopoietic Cell Transplantation.Clin Infect Dis. 2017 Nov 29;65(12):1984-1991. doi: 10.1093/cid/cix699.
22 Effects of mesalazine combined with bifid triple viable on intestinal flora, immunoglobulin and levels of cal, MMP-9, and MPO in feces of patients with ulcerative colitis. Eur Rev Med Pharmacol Sci. 2020 Jan;24(2):935-942. doi: 10.26355/eurrev_202001_20079.
23 IgA Function in Relation to the Intestinal Microbiota.Annu Rev Immunol. 2018 Apr 26;36:359-381. doi: 10.1146/annurev-immunol-042617-053238. Epub 2018 Jan 26.
24 Microbiota and Derived Parameters in Fecal Samples of Infants with Non-IgE Cow's Milk Protein Allergy under a Restricted Diet.Nutrients. 2018 Oct 11;10(10):1481. doi: 10.3390/nu10101481.
25 Dysbiosis of gut microbiome affecting small intestine morphology and immune balance: a rhesus macaque model.Zool Res. 2020 Jan 18;41(1):20-31. doi: 10.24272/j.issn.2095-8137.2020.004.
26 Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol. 2019 Aug;17(8):497-511. doi: 10.1038/s41579-019-0213-6.
27 Gut microbiota in HIV-pneumonia patients is related to peripheral CD4 counts, lung microbiota, and in vitro macrophage dysfunction. Microbiome. 2019 Mar 11;7(1):37. doi: 10.1186/s40168-019-0651-4.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.