General Information of HIF (ID: HIFM0270)
HIF Name
Immunoglobulin G
HIF Synonym(s)
IgG
HIF Classification
Immunoglobulin (Ig)
Description Immunoglobulin G(IgG) is the most common isotype of Immunoglobulin and include four subclasses which differ from one another in the following ways: their initial amino acid sequence, their physical and chemical properties and the different serum concentrations reached with age. [1]
Microbe Species (MIC) Regulated by This HIF
         Achromobacter xylosoxidans (beta-proteobacteria) MIC00007
             Description Achromobacter could be preferentially enriched in the IgG-targeted fraction of the microbiota. [2]
         Actinobacillus equuli (gamma-proteobacteria) MIC01766
             Description Opsonisation by specific IgG was necessary for efficient phagocytosis of Actinobacillus equuli by alveolar macrophages. [3]
         Actinomyces naeslundii (actinobacteria) MIC00033
             Description IgG immune responses is associated with Actinomyces naeslundii. [4]
         Aggregatibacter actinomycetemcomitans (gamma-proteobacteria) MIC00051
             Description IgG immune responses is associated with the Actinobacillus actinomycetemcomitans. [4]
         Alcaligenes faecalis (beta-proteobacteria) MIC00059
             Description The abundance of Alcaligenaceae is associated with IgG immune responses. [5]
         Bacillus anthracis (firmicutes) MIC00120
             Description Human IgG could response to peptidoglycan (PGN) from Bacillus anthracis. [6]
         Bacillus lentus (firmicutes) MIC00131
             Description Bacillus lentus can stimulate the formation of immunoglobulin G(IgG). [7]
         Bacteroides fragilis (CFB bacteria) MIC00158
             Description Systemic IgG could bound to Bacteroides fragilis. [2]
         Bacteroides ovatus (CFB bacteria) MIC00167
             Description Mice immunized with Bacteroides ovatus D-6 in the absence of adjuvants developed specific anti-TFa IgM and IgG antibodies which also bound to human cancer cells carrying TFa. [8]
         Bacteroides thetaiotaomicron (CFB bacteria) MIC00179
             Description IgG could response to Bacteroides thetaiotaomicron. [9]
         Bifidobacterium animalis subsp. lactis (actinobacteria) MIC00216
             Description The abundance of Bifidobacterium animalis subsp.lactis HN019 is associated with IgG immune response. [10]
         Blautia producta (firmicutes) MIC00981
             Description The abundance of Peptostreptococcus productus is associated with IgM response. [11]
         Burkholderia pseudomallei (beta-proteobacteria) MIC00287
             Description Sera from mice with enlarged spleens exhibited moderate IgG titers against Burkholderia pseudomallei. [12]
         Campylobacter jejuni (epsilon-proteobacteria) MIC00307
             Description Campylobacter jejuni ninfection induced production of IgG autoantibodies against ganglioside GM1 and caused complement-mediated motor nerve injury. [13]
         Campylobacter rectus (epsilon-proteobacteria) MIC00313
             Description IgG immune responses is associated with Campylobacter rectus. [4]
         Candida albicans (budding yeasts) MIC00317
             Description IgG is raised and protected from the intravaginal challenge with Candida albicans. [14]
         Capnocytophaga ochracea (CFB bacteria) MIC00328
             Description The activity of proteolytic enzymes from Capnocytophaga ochracea could effect enzymolysis of human immunoglobulin G(lgG). [15]
         Citrobacter rodentium (enterobacteria) MIC00366
             Description Immunoblotting with bacterial lysates using sera from Tlr2 / Tlr4 / mice showed reduced IgG in Tlr2 / Tlr4 / sera that recognized antigens produced by fecal bacteria, symbiotic bacteria Eescherichia coli and Klebsiella pneumoniae, as well as the gram-negative enteric pathogens Salmonella enterica serovar Typhimurium (Salmonella) and Citrobacter rodentium. [16]
         Clonorchis sinensis (firmicutes) MIC01834
             Description The intensity of Clonorchis sinensis infection is associated with the positive rate of IgG. [17]
         Clostridioides difficile (firmicutes) MIC00396
             Description Serum IgG and IgM antibodies to SLPs have been observed in both Clostridium difficile patients and asymptomatic carriers. [18]
         Coprococcus sp. (firmicutes) MIC00444
             Description IgG immune responses is associated with Coprococcus. [19]
         Corynebacterium diphtheriae (actinobacteria) MIC00452
             Description The abundance of Corynebacterium diphtheriae is associated with IgG immune response. [20]
         Delftia acidovorans (beta-proteobacteria) MIC00479
             Description Delftia could be preferentially enriched in the IgG-targeted fraction of the microbiota. [2]
         Enterococcus faecalis (firmicutes) MIC00548
             Description Systemic IgG could bound to Enterococcus faecalis. [2]
         Enterococcus hirae (firmicutes) MIC00551
             Description IgG could response to Enterococcus hirae. [9]
         Escherichia coli (enterobacteria) MIC00516
             Description The 50-g dose of double mutant heat-labile enterotoxin (dmLT) of Enterotoxigenic Escherichia coli recipients trended toward stronger responses than the 100-g dose recipients by serum IgG (67% versus 33%, p-value= 0.22). [21]
         Eubacterium nodatum (firmicutes) MIC01812
             Description Eubacterium nodatum is associated with IgG response. [4]
         Eubacterium saphenum (firmicutes) MIC00579
             Description The abundance of Eubacterium saphenum is associated with IgG immune response. [22]
         Finegoldia magna (firmicutes) MIC00596
             Description The abundance of Peptococcus is associated with IgG immune responses. [23]
         Flavonifractor plautii (firmicutes) MIC01414
             Description Flavonifractor is associated with IgG response. [19]
         Fusobacterium varium (fusobacteria) MIC00621
             Description The abundance of Fusobacterium varium is associated with IgG immune response. [24]
         Glaesserella parasuis (gamma-proteobacteria) MIC00654
             Description Haemophilus parasuis infection could active a humoral immune response, which is frequently associated with the development of a transient IgM response followed by a solid and progressively increasing IgG antibody response. [25]
         Granulicatella adiacens (firmicutes) MIC00645
             Description IgG immune responses is associated with Granulicatella. [19]
         Haemophilus ducreyi (gamma-proteobacteria) MIC00650
             Description The abundance of Haemophilus ducreyi is associated with IgG immune response. [26]
         Helicobacter pylori (epsilon-proteobacteria) MIC00669
             Description We found that the rate of IgG anti-Helicobacter pylori seropositivity was significantly improved in IgA nephropathy. [27]
         Histophilus somni (gamma-proteobacteria) MIC00655
             Description IgG antibodies recognize primarily a 40 kDa outer membrane protein (OMP) in whole cell Haemophilus somnus preparations. [28]
         Klebsiella aerogenes (enterobacteria) MIC00530
             Description Enterobacter aerogenes strains could produce immunoglobulin G (IgG) antibody which can recognized Klebsiella strains. [29]
         Klebsiella pneumoniae (enterobacteria) MIC01405
             Description Immunoblotting with bacterial lysates using sera from Tlr2 / Tlr4 / mice showed reduced IgG in Tlr2 / Tlr4 / sera that recognized antigens produced by fecal bacteria, symbiotic bacteria Eescherichia coli and Klebsiella pneumoniae, as well as the gram-negative enteric pathogens Salmonella enterica serovar Typhimurium (Salmonella) and Citrobacter rodentium. [16]
         Lactobacillus casei (firmicutes) MIC00707
             Description Lactobacillus casei is associated with IgG immune responses. [30]
         Lactobacillus kefiranofaciens (firmicutes) MIC00723
             Description The abundance of Lactobacillus kefiranofaciens is associated with IgG. [31]
         Lactobacillus zeae (firmicutes) MIC00738
             Description Lactobacillus zeae is associated with IgG immune responses. [32]
         Leuconostoc mesenteroides (firmicutes) MIC00766
             Description Leuconostoc mesenteroides is associated with IgG immune responses. [33]
         Methanobrevibacter smithii (euryarchaeotes) MIC00792
             Description The abundance of Methanobrevibacter smithii is associated with IgG immune response. [34]
         Mycobacterium kansasii (actinobacteria) MIC01785
             Description Cross-reactive IgG could response to MTB-PPD for Mycobacterium kansasii infection. [35]
         Mycoplasma arthritidis (tenericutes) MIC00863
             Description The abundance of Mycoplasma arthritidis is associated with IgG immune response. [36]
         Mycoplasma capricolum subsp. capripneumoniae (mycoplasmas) MIC00865
             Description Mycoplasma capricolum subsp.capripneumoniae is associated with IgG immune responses. [37]
         Mycoplasma conjunctivae (tenericutes) MIC00867
             Description Mycoplasma conjunctivae infection elicits a strong immune IgG response. [38]
         Mycoplasma pulmonis (mycoplasmas) MIC00876
             Description The abundance of Mycoplasma pulmonis is associated with IgG immune responses. [39]
         Mycoplasmatales (mycoplasmas) MIC00878
             Description Many Mycoplasmatales is related to certain unique features of the mycoplasma and its interaction with the IgG immune responses. [40]
         Myxococcus xanthus (delta-proteobacteria) MIC00880
             Description The abundance of Myxococcus xanthus is associated with IgG immune response. [41]
         Neisseria gonorrhoeae (beta-proteobacteria) MIC00885
             Description Neisseria gonorrhoeae could induce IgG responce. [42]
         Neisseria meningitidis (beta-proteobacteria) MIC00891
             Description IgG was used to remain free from Neisseria menningitidis infection. [43]
         Porphyromonas gingivalis (CFB bacteria) MIC01000
             Description The activity of proteolytic enzymes from Porphyromonas gingivalis could effect enzymolysis of human immunoglobulin G(lgG). [15]
         Porphyromonas sp. (CFB bacteria) MIC01003
             Description The infection of Porphyromonadaceae could increase the concentrations of serum IgG. [44]
         Prevotella copri (CFB bacteria) MIC01010
             Description Prevotella copri was associated with IgG response in rheumatoid arthritis disease. [45]
         Prevotella oralis (CFB bacteria) MIC00166
             Description The abundance of Prevotella oralis is associated with IgG immune response. [46]
         Pseudomonas aeruginosa (gamma-proteobacteria) MIC01054
             Description An engineered bispecific DNA-encoded IgG antibody protects against Pseudomonas aeruginosa in a pneumonia challenge model. [47]
         Pseudomonas oleovorans (gamma-proteobacteria) MIC01060
             Description The abundance of Pseudomonas oleovorans is associated with IgG response. [48]
         Rhodococcus hoagii (actinobacteria) MIC01092
             Description Opsonisation by specific IgG was necessary for efficient phagocytosis of Rhodococcus equi by alveolar macrophages. [3]
         Ruminococcus gnavus (firmicutes) MIC01137
             Description The abundance of Ruminococcus gnavus is associated with IgG response. [49]
         Ruminococcus sp. (firmicutes) MIC01140
             Description The abundance of Ruminococcaceae was associated with IgM response. [50]
         Saccharomyces cerevisiae (budding yeasts) MIC01145
             Description Saccharomyces cerevisiae is associated with IgG response. [51]
         Salmonella enterica (enterobacteria) MIC01150
             Description Immunoblotting with bacterial lysates using sera from Tlr2 / Tlr4 / mice showed reduced IgG in Tlr2 / Tlr4 / sera that recognized antigens produced by fecal bacteria, symbiotic bacteria Eescherichia coli and Klebsiella pneumoniae, as well as the gram-negative enteric pathogens Salmonella enterica serovar Typhimurium (Salmonella) and Citrobacter rodentium. [16]
         Salmonella enterica subsp. enterica (enterobacteria) MIC01154
             Description Immunoblotting with bacterial lysates using sera from Tlr2 / Tlr4 / mice showed reduced IgG in Tlr2 / Tlr4 / sera that recognized antigens produced by fecal bacteria, symbiotic bacteria Eescherichia coli and Klebsiella pneumoniae, as well as the gram-negative enteric pathogens Salmonella enterica serovar Typhimurium (Salmonella) and Citrobacter rodentium. [16]
         Serratia fonticola (enterobacteria) MIC01169
             Description Serratia could be preferentially enriched in the IgG-targeted fraction. [2]
         Staphylococcus aureus (firmicutes) MIC01208
             Description The abundance of Staphylococcus aureus is associated with IgG response. [52]
         Staphylococcus epidermidis (firmicutes) MIC01214
             Description Staphylococcus epidermidis was associated with IgG response. [53]
         Staphylococcus gallinarum (firmicutes) MIC01774
             Description Staphylococcus gallinarum was associated with IgG response. [54]
         Staphylococcus sciuri (firmicutes) MIC01222
             Description Staphylococcus sciuri was associated with IgG response. [54]
         Streptococcus equi (firmicutes) MIC01249
             Description The abundance of Streptococcus equi is associated with IgG response. [55]
         Streptococcus pneumoniae (firmicutes) MIC01263
             Description IgG could response to pneumococcal capsular polysaccharide (PCP). [56]
         Streptococcus pyogenes (firmicutes) MIC01267
             Description The SpeB protease from Streptococcus pyogenes could digest IgGs. [57]
         Tannerella forsythia (CFB bacteria) MIC01305
             Description Tannerella forsythia is associated with IgG response. [4]
         Toxocara canis (nematodes) MIC01800
             Description Toxocara canis-infected dogs exhibited higher levels of IgG and IgE levels against Toxocara canis. [58]
         Treponema denticola (spirochetes) MIC01322
             Description Treponema denticola is associated with IgG response. [4]
         Vibrio cholerae (gamma-proteobacteria) MIC01369
             Description Vibrio choleraeis was associated with IgM response. [59]
         Yersinia pestis (enterobacteria) MIC01401
             Description Yersinia pestis is associated with IgG response. [60]
References
1 [IgG subclasses and their clinical significance].Minerva Pediatr. 1990 Dec;42(12):509-14.
2 The antibody/microbiota interface in health and disease.Mucosal Immunol. 2020 Jan;13(1):3-11. doi: 10.1038/s41385-019-0192-y. Epub 2019 Aug 14.
3 The different effector function capabilities of the seven equine IgG subclasses have implications for vaccine strategies.Mol Immunol. 2008 Feb;45(3):818-27. doi: 10.1016/j.molimm.2007.06.158. Epub 2007 Jul 31.
4 Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease.PLoS One. 2014 Dec 18;9(12):e114959. doi: 10.1371/journal.pone.0114959. eCollection 2014.
5 Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012 Jan 10;3(1):e00261-11. doi: 10.1128/mBio.00261-11. Print 2012.
6 Serum Amyloid P and IgG Exhibit Differential Capabilities in the Activation of the Innate Immune System in Response to Bacillus anthracis Peptidoglycan. Infect Immun. 2018 Apr 23;86(5):e00076-18. doi: 10.1128/IAI.00076-18. Print 2018 May.
7 Effect of Bacillus firmus and other sporulating aerobic microorganisms on in vitro stimulation of human lymphocytes. A comparative study. Folia Microbiol (Praha). 1994;39(6):501-4. doi: 10.1007/BF02814071.
8 Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol Immunother. 2013 May;62(5):875-87. doi: 10.1007/s00262-013-1394-x. Epub 2013 Feb 5.
9 Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota.Cell. 2018 Jun 14;173(7):1742-1754.e17. doi: 10.1016/j.cell.2018.05.008.
10 Investigation of the immunomodulatory effects of Lactobacillus casei and Bifidobacterium lactis on Helicobacter pylori infection. Helicobacter. 2008 Jun;13(3):183-90. doi: 10.1111/j.1523-5378.2008.00595.x.
11 Serum agglutinins to Eubacterium and Peptostreptococcus species in Crohn's and other diseases. J Hyg (Lond). 1981 Aug;87(1):13-24. doi: 10.1017/s0022172400069199.
12 Dysregulation of TNF- and IFN- expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei. BMC Immunol. 2020 Feb 3;21(1):5. doi: 10.1186/s12865-020-0333-9.
13 On-Membrane Dynamic Interplay between Anti-GM1 IgG Antibodies and Complement Component C1q.Int J Mol Sci. 2019 Dec 24;21(1):147. doi: 10.3390/ijms21010147.
14 Candida vaginitis: virulence, host response and vaccine prospects.Med Mycol. 2018 Apr 1;56(suppl_1):26-31. doi: 10.1093/mmy/myx139.
15 Immunoglobulin-degrading enzymes in localized juvenile periodontitis.J Periodontal Res. 1992 May;27(3):176-83. doi: 10.1111/j.1600-0765.1992.tb01666.x.
16 Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens.Immunity. 2016 Mar 15;44(3):647-658. doi: 10.1016/j.immuni.2016.02.006. Epub 2016 Mar 2.
17 Usefulness of IgG4 subclass antibodies for diagnosis of human clonorchiasis.Korean J Parasitol. 1999 Dec;37(4):243-8. doi: 10.3347/kjp.1999.37.4.243.
18 Immune responses to Clostridium difficile infection.Trends Mol Med. 2012 Nov;18(11):658-66. doi: 10.1016/j.molmed.2012.09.005. Epub 2012 Oct 16.
19 The imbalance of gut microbiota and its correlation with plasma inflammatory cytokines in pemphigus vulgaris patients. Scand J Immunol. 2019 Sep;90(3):e12799. doi: 10.1111/sji.12799. Epub 2019 Jul 8.
20 Are there any clinical indications for measuring IgG subclasses. Ann Clin Biochem. 2002 Jul;39(Pt 4):374-7. doi: 10.1258/000456302760042678.
21 Safety and immunogenicity of a single oral dose of recombinant double mutant heat-labile toxin derived from enterotoxigenic Escherichia coli.Clin Vaccine Immunol. 2013 Nov;20(11):1764-70. doi: 10.1128/CVI.00464-13. Epub 2013 Sep 18.
22 Intraperitoneal immune cell responses to Eubacterium saphenum in mice. Microbiol Immunol. 2001;45(1):29-37. doi: 10.1111/j.1348-0421.2001.tb01271.x.
23 A non-immune interaction between the light chain of human immunoglobulin and a surface component of a Peptococcus magnus strain. Mol Immunol. 1985 Aug;22(8):879-85. doi: 10.1016/0161-5890(85)90073-2.
24 Investigation of the immune response to aerobic and anaerobic intestinal bacteria in a patient with Crohn's disease. Scand J Infect Dis Suppl. 1979;(19):52-60.
25 Haemophilus parasuis: infection, immunity and enrofloxacin. Vet Res. 2015 Oct 28;46:128. doi: 10.1186/s13567-015-0263-3.
26 The immune response to Haemophilus ducreyi resembles a delayed-type hypersensitivity reaction throughout experimental infection of human subjects. J Infect Dis. 1998 Dec;178(6):1688-97. doi: 10.1086/314489.
27 Helicobacter pylori participates in the pathogenesis of IgA nephropathy.Ren Fail. 2016 Oct;38(9):1398-1404. doi: 10.1080/0886022X.2016.1216713. Epub 2016 Oct 20.
28 Specificity of IgG and IgE antibody responses to Haemophilus somnus infection of calves.Vet Immunol Immunopathol. 2006 Sep 15;113(1-2):191-9. doi: 10.1016/j.vetimm.2006.05.003. Epub 2006 Jul 7.
29 Immunological cross-reactivity between Enterobacter aerogenes and Klebsiella capsular polysaccharides. Microb Pathog. 1990 Aug;9(2):127-30. doi: 10.1016/0882-4010(90)90086-6.
30 The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific. PLoS One. 2016 May 31;11(5):e0156374. doi: 10.1371/journal.pone.0156374. eCollection 2016.
31 Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 2006 Dec;36(5-6):254-60. doi: 10.1016/j.cyto.2007.01.003. Epub 2007 Mar 23.
32 The Effect of Lactobacillus isolates on growth performance, immune response, intestinal bacterial community composition of growing Rex Rabbits. J Anim Physiol Anim Nutr (Berl). 2017 Oct;101(5):e1-e13. doi: 10.1111/jpn.12629. Epub 2017 Jan 8.
33 Induction of Th1 cytokines by Leuconostoc mesenteroides subsp. mesenteroides (KCTC 3100) under Th2-type conditions and the requirement of NF-kappaB and p38/JNK. Cytokine. 2009 May;46(2):283-9. doi: 10.1016/j.cyto.2009.02.005. Epub 2009 Mar 18.
34 Methanobrevibacter smithii archaeosomes-entrapped mzNL4-3 virus-like particles induce specific T helper 1-oriented cellular and humoral responses against HIV-1. Curr HIV Res. 2013 Sep;11(6):491-7. doi: 10.2174/1570162x11666131216125059.
35 Dynamics of Immune Responses during Experimental Mycobacterium kansasii Infection of Cynomolgus Monkeys (Macaca fascicularis).Mediators Inflamm. 2018 Jun 5;2018:8354902. doi: 10.1155/2018/8354902. eCollection 2018.
36 Mycoplasma arthritidis-induced ocular inflammatory disease. Infect Immun. 1982 May;36(2):775-81.
37 Humoral immune responses following experimental infection in goats withMycoplasma capricolumsubsp.capripneumoniae. Vet Microbiol. 2002;84:2945. doi: 10.1016/S0378-1135(01)00434-5.
38 Postepizootic Persistence of Asymptomatic Mycoplasma conjunctivae Infection in Iberian Ibex. Appl Environ Microbiol. 2017 Jul 17;83(15):e00690-17. doi: 10.1128/AEM.00690-17. Print 2017 Aug 1.
39 Secretory immune responses to Mycoplasma pulmonis. Infect Immun. 1992 Feb;60(2):337-44.
40 Immune responses to mycoplasma infections of the respiratory tract. Vet Immunol Immunopathol. 1985 Oct;10(1):3-32. doi: 10.1016/0165-2427(85)90037-6.
41 Immunomodulation by myxospores of Myxococcus xanthus.J Gen Microbiol. 1985 Aug;131(8):2035-9. doi: 10.1099/00221287-131-8-2035.
42 Design and immune characterization of a novel Neisseria gonorrhoeae DNA vaccine using bacterial ghosts as vector and adjuvant. Vaccine. 2018 Jul 16;36(30):4532-4539. doi: 10.1016/j.vaccine.2018.06.006. Epub 2018 Jun 18.
43 Antibodies to vaccine antigens in pooled polyclonal human IgG products.Transfusion. 2018 Dec;58 Suppl 3:3096-3105. doi: 10.1111/trf.15017.
44 Consumption of polysaccharides from Auricularia auricular modulates the intestinal microbiota in mice. Food Res Int. 2019 Sep;123:383-392. doi: 10.1016/j.foodres.2019.04.070. Epub 2019 May 2.
45 Evidence of the Immune Relevance of Prevotella copri, a Gut Microbe, in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2017 May;69(5):964-975. doi: 10.1002/art.40003. Epub 2017 Apr 7.
46 Immune response in rats against lipopolysaccharides of Fusobacterium nucleatum and Bacteroides oralis administered in the root canal. Scand J Dent Res. 1980 Apr;88(2):122-9. doi: 10.1111/j.1600-0722.1980.tb01203.x.
47 An engineered bispecific DNA-encoded IgG antibody protects against Pseudomonas aeruginosa in a pneumonia challenge model.Nat Commun. 2017 Sep 21;8(1):637. doi: 10.1038/s41467-017-00576-7.
48 Serum antibodies to Pseudomonas pseudoalcaligenes in metal workers exposed to infected metal-working fluids. Int Arch Allergy Appl Immunol. 1989;88(3):304-11. doi: 10.1159/000234816.
49 Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 2019 Jul;78(7):947-956. doi: 10.1136/annrheumdis-2018-214856. Epub 2019 Feb 19.
50 Effects of mesalazine combined with bifid triple viable on intestinal flora, immunoglobulin and levels of cal, MMP-9, and MPO in feces of patients with ulcerative colitis. Eur Rev Med Pharmacol Sci. 2020 Jan;24(2):935-942. doi: 10.26355/eurrev_202001_20079.
51 Anti-food and anti-microbial IgG subclass antibodies in inflammatory bowel disease.Scand J Gastroenterol. 2016 Dec;51(12):1453-1461. doi: 10.1080/00365521.2016.1205130. Epub 2016 Jul 25.
52 Hypersensitivity to bacteria in eczema. I. Bacterial culture, skin tests and immunofluorescent detection of immunoglobulins and bacterial antigens.Br J Dermatol. 1976 Jun;94(6):619-32. doi: 10.1111/j.1365-2133.1976.tb05161.x.
53 Microbiota and host immune responses: a love-hate relationship. Immunology. 2016 Jan;147(1):1-10. doi: 10.1111/imm.12538. Epub 2015 Nov 2.
54 Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin.Nat Med. 2016 May;22(5):524-30. doi: 10.1038/nm.4075. Epub 2016 Apr 11.
55 The fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi additionally binds IgG and contributes to virulence in a mouse model.Microbiology. 2001 Dec;147(Pt 12):3311-22. doi: 10.1099/00221287-147-12-3311.
56 Purification and characterisation of anti-pneumococcal capsular polysaccharide IgG immunoglobulins.Clin Biochem. 2017 Jan;50(1-2):80-83. doi: 10.1016/j.clinbiochem.2016.08.009. Epub 2016 Aug 17.
57 Generating and Purifying Fab Fragments from Human and Mouse IgG Using the Bacterial Enzymes IdeS, SpeB and Kgp.Methods Mol Biol. 2017;1535:319-329. doi: 10.1007/978-1-4939-6673-8_21.
58 A Toxocara canis infection influences the immune response to house dust mite allergens in dogs.Vet Immunol Immunopathol. 2018 Aug;202:11-17. doi: 10.1016/j.vetimm.2018.06.009. Epub 2018 Jun 11.
59 Vibrio cholerae at the Intersection of Immunity and the Microbiome. mSphere. 2019 Nov 27;4(6):e00597-19. doi: 10.1128/mSphere.00597-19.
60 Immunology of Yersinia pestis Infection. Adv Exp Med Biol. 2016;918:273-292. doi: 10.1007/978-94-024-0890-4_10.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.