General Information of HGF (ID: HGF0252)
HGF Name hsa-miR-146a-5p
HGF Synonym(s) microRNA 146a-5p, MIRN146a-5p, MIR146a-5p
Source Homo sapiens
HGF Classification Non-coding RNA: Micro (ncRNA-miRNA)
Gene Location chr5
Gene Start Site 160485372 Gene End Site 160485393
Strand Forward (+)
Sequence Click here to download the HGF sequence in FASTA format
External Links
miRBase ID
MIMAT0000449
Microbe Species (MIC) Regulated by This HGF
         Aggregatibacter actinomycetemcomitans (gamma-proteobacteria) MIC00051
             Description The miR-146a was significantly induced down-regulation by Aggregatibacter actinomycetemcomitans (p-value<0.05). [1]
         Brucella sp. (alpha-proteobacteria) MIC00274
             Description The hsa-miR-146a-5p was significantly up-regulated during Brucella infection (Pvalue<0.05). [2]
         Burkholderia pseudomallei (beta-proteobacteria) MIC00287
             Description The expression of hsa-miR-96-5p was 1.313-fold down-regulated in Burkholderia pseudomallei. [3]
         Campylobacter concisus (epsilon-proteobacteria) MIC00302
             Description The level of hsa-miR-146a-5p was up-regulated 27-fold in THP-1 derived macrophages infected with Campylobacter concisus. [4]
         Candida albicans (budding yeasts) MIC00317
             Description In heat-killed Candida albicans-infected macrophage, miR-146a-5p was up-regulated by LPS induction. [2]
         Chlamydia muridarum (chlamydias) MIC00341
             Description The expression of miR-146a-5p was significantly up-regulated during Chlamydia muridarum infection (p-value<0.05). [5]
         Citrobacter rodentium (enterobacteria) MIC00366
             Description The level of miR-146 expression and a specific host miRNA response with it takes place during infection with Citrobacter rodentium. [6]
         Cryptococcus neoformans (basidiomycetes) MIC00472
             Description The expression of miR-146a was rapidly induced by 3.5-fold at 3 h, upon Cryptococcus neoformans infection. [7]
         Escherichia coli (enterobacteria) MIC00516
             Description The miR-146a downregulated the expression of the genes IRAK1 and TRAF6 in Escherichia coli. [8]
         Francisella sp. (gamma-proteobacteria) MIC00605
             Description The level of miR-146a expression was significantly upregulated by Francisella (p-value<0.05). [9]
         Gardnerella vaginalis (actinobacteria) MIC00626
             Description The level of miR-146 expression was significantly upregulated by Gardnella vaginalis infection (p-value<0.05). [10]
         Helicobacter bilis (epsilon-proteobacteria) MIC00663
             Description The level of miR-146a expression was increased in gastric epithelial cells of Helicobacter pylori infection. [8]
         Helicobacter pylori (epsilon-proteobacteria) MIC00669
             Description The miR-146a was found to enhance the apoptosis in Helicobacter pylori-infected GC cell lines. [11]
         Lactobacillus acidophilus (firmicutes) MIC00702
             Description The application of Lactobacillus acidophilus KLDS resulted in the down-regulation of miR-146a. [12]
         Lactobacillus iners (firmicutes) MIC00719
             Description The level of miR-146 expression by Lactobacillus iners bacteria-free supernatants with no expression change. [13]
         Listeria monocytogenes (firmicutes) MIC00771
             Description The mmu-miR-146a expression was up-regulated 2.5-fold in Listeria monocytogenes infection. [14]
         Mycobacteroides abscessus (actinobacteria) MIC00845
             Description The level of miR-146a expression is increased by Mycobacterium infection. [8]
         Porphyromonas endodontalis (CFB bacteria) MIC00999
             Description The miR-146a was significantly increased in MC3T3-E1 cells stimulated with Porphyromonas endodontalis LPS. [15]
         Porphyromonas gingivalis (CFB bacteria) MIC01000
             Description The level of miR-146a expression is associated with the abundance of Porphyromonas gingivalis (p-value<0.05). [16]
         Pseudomonas aeruginosa (gamma-proteobacteria) MIC01054
             Description Pseudomonas aeruginosa infection was negatively associated with abundance of monocytes and the presence of hsa-miR-146a. [17]
         Pseudomonas sp. (gamma-proteobacteria) MIC01053
             Description Pseudomonas monospecies biofilm induced the expression level of miR-146a. [18]
         Ruminococcus sp. (firmicutes) MIC01140
             Description The deletion of miR-146an increased the abundance of Ruminococcaceae. [19]
         Salmonella enterica (enterobacteria) MIC01150
             Description The level of miR-146 expression and a specific host miRNA response with it takes place during infection with Salmonella enterica. [6]
         Salmonella sp. (enterobacteria) MIC01149
             Description hsa-miR-146a miRNA that strongly increase the relative abundance of Salmonella by at least 1.5-fold. The average percentage of Salmonella infection cells(fold over control) is equal to 1.8862. [20]
         Tannerella forsythia (CFB bacteria) MIC01305
             Description The level of miR-146a expression is associated with the abundance of Tannerella forsythia (p-value<0.05). [16]
         Treponema denticola (spirochetes) MIC01322
             Description The level of miR-146a expression was inhibited by Treponema denticola alonely. [16]
References
1 MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate expression of genes regulating innate immunity in human macrophages. Innate Immun. 2014 Jul;20(5):540-51. doi: 10.1177/1753425913501914. Epub 2013 Sep 23.
2 Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. Jin W, Ibeagha-Awemu EM, Liang G, Beaudoin F, Zhao X, Guan le L.. BMC Genomics. 2014 Mar 7;15:181. doi: 10.1186/1471-2164-15-181.
3 Differential MicroRNA Analyses of Burkholderia pseudomallei- and Francisella tularensis-Exposed hPBMCs Reveal Potential Biomarkers. Int J Genomics. 2017;2017:6489383. doi: 10.1155/2017/6489383. Epub 2017 Jul 16.
4 Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus. Infect Immun. 2015 Feb;83(2):832-45. doi: 10.1128/IAI.03012-14. Epub 2014 Dec 8.
5 Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Maudet C, Mano M, Sunkavalli U, Sharan M, Giacca M, Frstner KU, Eulalio A.. Nat Commun. 2014 Aug 22;5:4718. doi: 10.1038/ncomms5718.
6 The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. mBio. 2013 Dec 10;4(6):e00707-13. doi: 10.1128/mBio.00707-13.
7 Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Kiga K, Mimuro H, Suzuki M, Shinozaki-Ushiku A, Kobayashi T, Sanada T, Kim M, Ogawa M, Iwasaki YW, Kayo H, Fukuda-Yuzawa Y, Yashiro M, Fukayama M, Fukao T, Sasakawa C.. Nat Commun. 2014 Sep 4;5:4497. doi: 10.1038/ncomms5497.
8 miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther. 2018 May 25;3:14. doi: 10.1038/s41392-018-0006-9. eCollection 2018.
9 Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction. Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.BAI-0002-2019.
10 Influence of Aspergillus fumigatus conidia viability on murine pulmonary microRNA and mRNA expression following subchronic inhalation exposure. Croston TL, Nayak AP, Lemons AR, Goldsmith WT, Gu JK, Germolec DR, Beezhold DH, Green BJ.. Clin Exp Allergy. 2016 Oct;46(10):1315-27. doi: 10.1111/cea.12783. Epub 2016 Sep 16.
11 Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol. 2019;421:267-302. doi: 10.1007/978-3-030-15138-6_11.
12 Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Vikram A, Kim YR, Kumar S, Li Q, Kassan M, Jacobs JS, Irani K.. Nat Commun. 2016 Sep 2;7:12565. doi: 10.1038/ncomms12565.
13 Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nirmalkar K, Murugesan S, Pizano-Zrate ML, Villalobos-Flores LE, Garca-Gonzlez C, Morales-Hernndez RM, Nuez-Hernndez JA, Hernndez-Quiroz F, Romero-Figueroa MDS, Hernndez-Guerrero C, Hoyo-Vadillo C, Garca-Mena J.. Nutrients. 2018 Dec 19;10(12):2009. doi: 10.3390/nu10122009.
14 Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response. PLoS One. 2011;6(11):e27435. doi: 10.1371/journal.pone.0027435. Epub 2011 Nov 17.
15 microRNA-146a and Hey2 form a mutual negative feedback loop to regulate the inflammatory response in chronic apical periodontitis. J Cell Biochem. 2019 Jan;120(1):645-657. doi: 10.1002/jcb.27422. Epub 2018 Aug 20.
16 Polymicrobial infection alter inflammatory microRNA in rat salivary glands during periodontal disease. Anaerobe. 2016 Apr;38:70-75. doi: 10.1016/j.anaerobe.2015.10.005. Epub 2015 Oct 22.
17 Genome-Wide miRNA Analysis Identifies Potential Biomarkers in Distinguishing Tuberculous and Viral Meningitis. Pan L, Liu F, Zhang J, Li J, Jia H, Huang M, Liu X, Chen W, Ding Z, Wang Y, Du B, Wei R, Sun Q, Xing A, Zhang Z.. Front Cell Infect Microbiol. 2019 Sep 10;9:323. doi: 10.3389/fcimb.2019.00323. eCollection 2019.
18 Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples. Tarallo S, Ferrero G, Gallo G, Francavilla A, Clerico G, Realis Luc A, Manghi P, Thomas AM, Vineis P, Segata N, Pardini B, Naccarati A, Cordero F.. mSystems. 2019 Sep 17;4(5):e00289-19. doi: 10.1128/mSystems.00289-19.
19 AhR Activation by TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) Attenuates Pertussis Toxin-Induced Inflammatory Responses by Differential Regulation of Tregs and Th17 Cells Through Specific Targeting by microRNA. Al-Ghezi ZZ, Singh N, Mehrpouya-Bahrami P, Busbee PB, Nagarkatti M, Nagarkatti PS.. Front Microbiol. 2019 Oct 18;10:2349. doi: 10.3389/fmicb.2019.02349. eCollection 2019.
20 Effects of Lactobacillus acidophilus and Bifidobacterium bifidum Probiotics on the Expression of MicroRNAs 135b, 26b, 18a and 155, and Their Involving Genes in Mice Colon Cancer. Heydari Z, Rahaie M, Alizadeh AM, Agah S, Khalighfard S, Bahmani S.. Probiotics Antimicrob Proteins. 2019 Dec;11(4):1155-1162. doi: 10.1007/s12602-018-9478-8.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.