General Information of HIF (ID: HIFC0020)
HIF Name
Macrophages
HIF Synonym(s)
macrophage, Macrophages
HIF Classification
Macrophages (Mac)
Description Macrophages are a type of white blood cell of the immune system, that engulfs and digests cellular debris, foreign substances, microbes, cancer cells, and anything else that does not have the type of proteins specific to healthy body cells on its surface in a process called phagocytosis. [1]
Microbe Species (MIC) Regulated by This HIF
         Aspergillus fumigatus (ascomycetes) MIC00103
             Description Macrophages are critical for protection against pathogenic Aspergillus fumigatus. [2]
         Bordetella bronchiseptica (beta-proteobacteria) MIC00245
             Description Bordetella bronchiseptica is able to modulate cytokine production by macrophages. [3]
         Clostridioides difficile (firmicutes) MIC00396
             Description Clostridium difficile Toxins A and B induced inflammasome activation and signaling in macrophages. [4]
         Corynebacterium glutamicum (actinobacteria) MIC00455
             Description Cell wall extracts of Corynebacterium glutamicum stimulated the inflammatory response of macrophages in a dose-dependent manner. [5]
         Coxiella burnetii (gamma-proteobacteria) MIC00467
             Description Macrophages are well-known targets of Coxiella burnetii. [6]
         Cronobacter sakazakii (enterobacteria) MIC00469
             Description Cronobacter sakazakii strains used in the survival experiments showed the ability to persist within human macrophages cell line U937 for up to 72h of incubation. [7]
         Desulfovibrio vulgaris (delta-proteobacteria) MIC00502
             Description The Desulfovibrio vulgaris wild-type strain suffered an approximately 30% decrease in survival upon coculture with macrophages(P< 0.005). [8]
         Ehrlichia chaffeensis (alpha-proteobacteria) MIC00523
             Description Ehrlichia chaffeensis lipoproteins can activate microbicidal activities of macrophages through Toll-like receptor 2. [9]
         Erysipelothrix rhusiopathiae (firmicutes) MIC00559
             Description Macrophage expressed IL-18 in host defenses against Erysipelothrix rhusiopathiae infection. [10]
         Escherichia coli (enterobacteria) MIC00516
             Description Macrophages from adult colon excelled at taking up fluorescently labeled Escherichia coli into acidified vesicles. [11]
         Eubacterium saphenum (firmicutes) MIC00579
             Description Macrophages appeared in peritoneal exudates after the injection of Eubacterium saphenum. [12]
         Flavonifractor plautii (firmicutes) MIC01414
             Description Flavonifractor plautii enhanced respiratory defenses via granulocyte-macrophages colony-stimulating factor (GM-CSF) signaling. [13]
         Fusobacterium necrophorum (fusobacteria) MIC00616
             Description Fusobacterium necrophorum cells were mainly sequestered in phagocytic vacuoles in the cytoplasni of macrophages. And abscesses during early Fusobacterium necrophorum infection contained more macrophages. [14]
         Lactobacillus crispatus (firmicutes) MIC00710
             Description Fusobacterium necrophorum is associated with macrophages response. [15]
         Lactobacillus paracasei (firmicutes) MIC00726
             Description Lactobacillus paracasei infection induced enhanced anti-inflammatory macrophages. [16]
         Leptospira interrogans (spirochaetes) MIC00759
             Description Macrophages play a key role in fighting infection and pathogen clearance of Leptospira interrogans. [17]
         Leptotrichia goodfellowii (fusobacteria) MIC00762
             Description Leptotrichia was able to trigger the transcription level of IL-10 in epithelial cells which could prohibit excessive immune response by suppressing the antigen-presenting capacity of macrophages. [18]
         Leuconostoc citreum (firmicutes) MIC00764
             Description Leuconostoc citreum HJ-P4 induces interleukin-12 through nuclear factor-kappa B and p38/c-Jun N-terminal kinases signaling in macrophages. [19]
         Listeria monocytogenes (firmicutes) MIC00771
             Description Activated macrophage can handle and directly kill Listeria monocytogenes. [20]
         Mycobacterium sp. (actinobacteria) MIC00855
             Description Mycobacterium sp. up-regulated pro-inflammatory cytokines and chemokine including TNF-, IFN-, IL-6 and IL-8 in macrophages. [21]
         Mycobacterium tuberculosis (actinobacteria) MIC00857
             Description Macrophages are known to be the main host cell target for Mycobacterium tuberculosis. [22]
         Mycobacteroides abscessus (actinobacteria) MIC00845
             Description Macrophages can polarize into two subtypes (M1 and M2) in response to Mycobacterium infections. [23]
         Mycoplasma agalactiae (mycoplasmas) MIC00862
             Description Mycoplasma agalactiae is associated with macrophages response. [24]
         Mycoplasma pneumoniae (mycoplasmas) MIC00875
             Description Mycoplasma pneumoniae-derived ADP-ribosylating and vacuolating toxin called community-acquired respiratory distress syndrome (CARDS) toxin is capable of triggering NLRP3 (NLR-family, leucine-rich repeat protein 3) inflammasome activation and interleukin-1 (IL-1) secretion in macrophages. [25]
         Neisseria sp. (beta-proteobacteria) MIC00900
             Description The class A scavenger receptor on macrophages can enhance Neisseria uptake. [26]
         Pediococcus pentosaceus (firmicutes) MIC01430
             Description Pediococcus pentosaceus stimulated IFN-gamma-primed macrophages to induce immune responses. [27]
         Plesiomonas shigelloides (enterobacteria) MIC00994
             Description The heptaacylated form of Plesiomonas shigelloides lipid A(LA) exhibited strong effect on proinflammatory activity, significantly decreasing the levels of all tested cytokines in human macrophages. [28]
         Propionibacterium freudenreichii (actinobacteria) MIC01033
             Description Attenuation of colitis by DHNA from Propionibacterium freudenreichii may partly be a result of its direct action on intestinal macrophages to inhibit proinflammatory cytokine production. [29]
         Rhodococcus hoagii (actinobacteria) MIC01092
             Description Intracellular replication of Rhodococcus equi was associated with macrophages response. [30]
         Rhodopseudomonas palustris (alpha-proteobacteria) MIC01096
             Description RPEPS-30 from Rhodopseudomonas palustris could enhance mRNA expression of cytokines in macrophages. [31]
         Rickettsia prowazekii (alpha-proteobacteria) MIC01108
             Description Macrophages can kill Rickettsia prowazekii in the protection of subjects against rickettsial infections. [32]
         Roseburia intestinalis (firmicutes) MIC01118
             Description Roseburia intestinalis supernatant suppressed expression of interleukin (IL) 6 and signal transducer and activator of transcription 3 (STAT3) by macrophages. [33]
         Serratia marcescens (enterobacteria) MIC01171
             Description Serratia marcescens activated bone marrow derived macrophages. [34]
         Spirochaetes (bacteria) MIC01204
             Description Treponema lecithinolyticum among Spirochaetes induced the production of interleukin (IL)-6, IL-8, tumour necrosis factor-a, interferon-b and IL-1b by macrophage-like cell lines. [35]
         Streptococcus gallolyticus (firmicutes) MIC01251
             Description Streptococcus gallolyticus selectively recruits tumor-infiltrating myeloid cells but not mast cells, including tumor-associated macrophages. [36]
         Streptococcus pyogenes (firmicutes) MIC01267
             Description Streptococcus pyogenes is associated with macrophages response. [37]
         Streptococcus salivarius (firmicutes) MIC01268
             Description Streptococcus salivarius-specific granzyme B responses was mediated by CD8 T cell and the polarization of macrophages could influence the potency of CD8 T cell responses. [38]
         Treponema pallidum (spirochaetes) MIC01325
             Description The P2X7 receptor promotes phagocytosis in the macrophage response to Treponema pallidum. [39]
         Trueperella pyogenes (actinobacteria) MIC01335
             Description Trueperella pyogenes is associated with macrophages response. [40]
         Yersinia enterocolitica (enterobacteria) MIC01398
             Description The culture supernatant of plasmid-bearing Yersinia enterocolitica induced suppression of TNF-alpha mRNA expression in macrophage. [41]
         Yersinia pestis (enterobacteria) MIC01401
             Description Macrophage was the first defense against Yersinia pestis invading through phagocytosis and killing. [42]
References
1 Integrating immunometabolism and macrophage diversity.Semin Immunol. 2016 Oct;28(5):417-424. doi: 10.1016/j.smim.2016.10.004. Epub 2016 Oct 19.
2 Influence of Platelet-rich Plasma on the immune response of human monocyte-derived dendritic cells and macrophages stimulated with Aspergillus fumigatus. Int J Med Microbiol. 2017 Feb;307(2):95-107. doi: 10.1016/j.ijmm.2016.11.010. Epub 2016 Dec 9.
3 Respiratory Bordetella bronchiseptica Carriage is Associated with Broad Phenotypic Alterations of Peripheral CD4+CD25+ T Cells and Differentially Affects Immune Responses to Secondary Non-Infectious and Infectious Stimuli in Mice. Int J Mol Sci. 2018 Sep 1;19(9):2602. doi: 10.3390/ijms19092602.
4 Immune responses to Clostridium difficile infection.Trends Mol Med. 2012 Nov;18(11):658-66. doi: 10.1016/j.molmed.2012.09.005. Epub 2012 Oct 16.
5 The role of corynomycolic acids in Corynebacterium-host interaction. Antonie Van Leeuwenhoek. 2018 May;111(5):717-725. doi: 10.1007/s10482-018-1036-6. Epub 2018 Feb 12.
6 Immune response and Coxiella burnetii invasion. Adv Exp Med Biol. 2012;984:287-98. doi: 10.1007/978-94-007-4315-1_15.
7 Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response. Microb Pathog. 2016 Jan;90:55-63. doi: 10.1016/j.micpath.2015.11.014. Epub 2015 Nov 23.
8 Hybrid cluster proteins and flavodiiron proteins afford protection to Desulfovibrio vulgaris upon macrophage infection. J Bacteriol. 2013 Jun;195(11):2684-90. doi: 10.1128/JB.00074-13. Epub 2013 Apr 5.
9 Proteomic analysis of and immune responses to Ehrlichia chaffeensis lipoproteins. Infect Immun. 2008 Aug;76(8):3405-14. doi: 10.1128/IAI.00056-08. Epub 2008 May 19.
10 Immunostimulatory effects of recombinant Erysipelothrix rhusiopathiae expressing porcine interleukin-18 in mice and pigs. Clin Vaccine Immunol. 2012 Sep;19(9):1393-8. doi: 10.1128/CVI.00342-12. Epub 2012 Jul 3.
11 Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice.Nat Immunol. 2014 Oct;15(10):929-937. doi: 10.1038/ni.2967. Epub 2014 Aug 24.
12 Intraperitoneal immune cell responses to Eubacterium saphenum in mice. Microbiol Immunol. 2001;45(1):29-37. doi: 10.1111/j.1348-0421.2001.tb01271.x.
13 The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun. 2017 Nov 15;8(1):1512. doi: 10.1038/s41467-017-01803-x.
14 Hepatic lesions and bacterial changes in mice during infection of Fusobacterium necrophorum. Can J Microbiol. 1977 Oct;23(10):1465-77. doi: 10.1139/m77-215.
15 Lactobacillus crispatus mediates anti-inflammatory cytokine interleukin-10 induction in response to Chlamydia trachomatis infection in vitro. Int J Med Microbiol. 2015 Dec;305(8):815-27. doi: 10.1016/j.ijmm.2015.07.005. Epub 2015 Sep 5.
16 Adapted Immune Responses of Myeloid-Derived Cells in Fatty Liver Disease.Front Immunol. 2018 Oct 18;9:2418. doi: 10.3389/fimmu.2018.02418. eCollection 2018.
17 Innate immune memory through TLR2 and NOD2 contributes to the control of Leptospira interrogans infection. PLoS Pathog. 2019 May 20;15(5):e1007811. doi: 10.1371/journal.ppat.1007811. eCollection 2019 May.
18 Leptotrichia species in human infections II. J Oral Microbiol. 2017 Sep 15;9(1):1368848. doi: 10.1080/20002297.2017.1368848. eCollection 2017.
19 Leuconostoc citreum isolated from kimchi suppresses the development of collagen-induced arthritis in DBA/1 mice. Min-SungKwon. Journal of Functional Foods. 63, 103579. doi:10.1016/j.jff.2019.103579
20 HDAC6 controls innate immune and autophagy responses to TLR-mediated signalling by the intracellular bacteria Listeria monocytogenes. PLoS Pathog. 2017 Dec 27;13(12):e1006799. doi: 10.1371/journal.ppat.1006799. eCollection 2017 Dec.
21 Molecular characterization and immunogenic function of ML1899 (LipG) of Mycobacterium leprae. J Med Microbiol. 2019 Nov;68(11):1629-1640. doi: 10.1099/jmm.0.001080.
22 The Host Microbiota Contributes to Early Protection Against Lung Colonization by Mycobacterium tuberculosis.Front Immunol. 2018 Nov 14;9:2656. doi: 10.3389/fimmu.2018.02656. eCollection 2018.
23 Mycobacterium marinum: a potential immunotherapy for Mycobacterium tuberculosis infection. Drug Des Devel Ther. 2013 Jul 29;7:669-80. doi: 10.2147/DDDT.S45197. Print 2013.
24 Xer1-independent mechanisms of Vpma phase variation in Mycoplasma agalactiae are triggered by Vpma-specific antibodies. Int J Med Microbiol. 2017 Dec;307(8):443-451. doi: 10.1016/j.ijmm.2017.10.005. Epub 2017 Nov 6.
25 NLRP3 Is a Critical Regulator of Inflammation and Innate Immune Cell Response during Mycoplasma pneumoniae Infection. Infect Immun. 2017 Dec 19;86(1):e00548-17. doi: 10.1128/IAI.00548-17. Print 2018 Jan.
26 The biology of Neisseria adhesins. Biology (Basel). 2013 Jul 29;2(3):1054-109. doi: 10.3390/biology2031054.
27 Comparative Genomics of Pediococcus pentosaceus Isolated From Different Niches Reveals Genetic Diversity in Carbohydrate Metabolism and Immune System. Front Microbiol. 2020 Feb 26;11:253. doi: 10.3389/fmicb.2020.00253. eCollection 2020.
28 Structure-Activity Relationship of Plesiomonas shigelloides Lipid A to the Production of TNF-, IL-1, and IL-6 by Human and Murine Macrophages. Front Immunol. 2017 Dec 11;8:1741. doi: 10.3389/fimmu.2017.01741. eCollection 2017.
29 1,4-Dihydroxy-2-naphthoic acid from Propionibacterium freudenreichii reduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines. J Leukoc Biol. 2013 Sep;94(3):473-80. doi: 10.1189/jlb.0212104. Epub 2013 Jun 25.
30 Effects of age and macrophage lineage on intracellular survival and cytokine induction after infection with Rhodococcus equi. Vet Immunol Immunopathol. 2014 Jul 15;160(1-2):41-50. doi: 10.1016/j.vetimm.2014.03.010. Epub 2014 Mar 29.
31 Preparation and biological activities of an extracellular polysaccharide from Rhodopseudomonas palustris. Int J Biol Macromol. 2019 Jun 15;131:933-940. doi: 10.1016/j.ijbiomac.2019.03.139. Epub 2019 Mar 21.
32 A murine model of infection with Rickettsia prowazekii: implications for pathogenesis of epidemic typhus. Microbes Infect. 2007 Jun;9(7):898-906. doi: 10.1016/j.micinf.2007.03.008. Epub 2007 Mar 21.
33 Roseburia intestinalis supernatant ameliorates colitis induced in mice by regulating the immune response. Mol Med Rep. 2019 Aug;20(2):1007-1016. doi: 10.3892/mmr.2019.10327. Epub 2019 Jun 4.
34 Innate immune regulation of Serratia marcescens-induced corneal inflammation and infection. Invest Ophthalmol Vis Sci. 2012 Oct 25;53(11):7382-8. doi: 10.1167/iovs.12-10238.
35 New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect. 2011 Apr;17(4):502-12. doi: 10.1111/j.1469-0691.2011.03460.x.
36 Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem Biophys Res Commun. 2018 Dec 2;506(4):907-911. doi: 10.1016/j.bbrc.2018.10.136. Epub 2018 Nov 2.
37 Innate immune response to Streptococcus pyogenes depends on the combined activation of TLR13 and TLR2. PLoS One. 2015 Mar 10;10(3):e0119727. doi: 10.1371/journal.pone.0119727. eCollection 2015.
38 Streptococcus salivarius-mediated CD8(+) T cell stimulation required antigen presentation by macrophages in oral squamous cell carcinoma. Exp Cell Res. 2018 May 15;366(2):121-126. doi: 10.1016/j.yexcr.2018.03.007. Epub 2018 Mar 9.
39 The P2X7 receptor mediates NLRP3-dependent IL-1 secretion and promotes phagocytosis in the macrophage response to Treponema pallidum. Int Immunopharmacol. 2020 Mar 6;82:106344. doi: 10.1016/j.intimp.2020.106344. Online ahead of print.
40 Quorum-sensing molecules N-acyl homoserine lactones inhibit Trueperella pyogenes infection in mouse model. Vet Microbiol. 2018 Jan;213:89-94. doi: 10.1016/j.vetmic.2017.11.029. Epub 2017 Nov 22.
41 Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression. Infect Immun. 1995 Apr;63(4):1270-7.
42 Immunology of Yersinia pestis Infection. Adv Exp Med Biol. 2016;918:273-292. doi: 10.1007/978-94-024-0890-4_10.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.