General Information of HIF (ID: HIFM0153)
HIF Name
C-X-C motif chemokine 8
HIF Synonym(s)
C-X-C motif chemokine ligand 8, GCP-1, GCP1, IL8, LECT, LUCT, LYNAP, MDNCF, MONAP, NAF, NAP-1, NAP1, SCYB8
HIF Classification
Cytokine (Cyt)
Molecular Function
Cytokine
Description Chemokines are small proteins that control several tissue functions, including cell recruitment and activation under homeostatic and inflammatory conditions. CXCL8 (interleukin-8) is a member of the chemokine family that acts on CXCR1 and CXCR2 receptors. [1]
Pfam Small cytokines (intecrine/chemokine), interleukin-8 like (PF00048 )
Pathway AGE-RAGE signaling pathway in diabetic complications (hsa04933 )
Amoebiasis (hsa05146 )
Bladder cancer (hsa05219 )
Cellular senescence (hsa04218 )
Chagas disease (American trypanosomiasis) (hsa05142 )
Chemokine signaling pathway (hsa04062 )
Cytokine-cytokine receptor interaction (hsa04060 )
Epithelial cell signaling in Helicobacter pylori infection (hsa05120 )
Hepatitis B (hsa05161 )
Human cytomegalovirus infection (hsa05163 )
IL-17 signaling pathway (hsa04657 )
Influenza A (hsa05164 )
Kaposi sarcoma-associated herpesvirus infection (hsa05167 )
Legionellosis (hsa05134 )
Malaria (hsa05144 )
NF-kappa B signaling pathway (hsa04064 )
NOD-like receptor signaling pathway (hsa04621 )
Non-alcoholic fatty liver disease (NAFLD) (hsa04932 )
Pathogenic Escherichia coli infection (hsa05130 )
Pathways in cancer (hsa05200 )
Pertussis (hsa05133 )
Phospholipase D signaling pathway (hsa04072 )
RIG-I-like receptor signaling pathway (hsa04622 )
Rheumatoid arthritis (hsa05323 )
Salmonella infection (hsa05132 )
Shigellosis (hsa05131 )
Toll-like receptor signaling pathway (hsa04620 )
Transcriptional misregulation in cancer (hsa05202 )
Viral protein interaction with cytokine and cytokine receptor (hsa04061 )
Yersinia infection (hsa05135 )
Sequence Click here to download the HIF sequence in FASTA format
External Links
Uniprot ID
IL8_HUMAN
Microbe Species (MIC) Regulated by This HIF
         Aggregatibacter aphrophilus (gamma-proteobacteria) MIC00052
             Description Aggregatibacter is associated with IL-8 expression. [2]
         Akkermansia muciniphila (verrucomicrobia) MIC00056
             Description Akkermansia muciniphila induced higher expression level of IL-8. [3]
         Atopobium vaginae (actinobacteria) MIC00110
             Description IL-8 was secreted by vaginal epithelial cells in response to the activity of Atopobium vaginae. [4]
         Bifidobacterium breve (actinobacteria) MIC00210
             Description Brucella canis is associated with IL-8. [5]
         Burkholderia cenocepacia (beta-proteobacteria) MIC00280
             Description The expression of IL-8 upregulated in alveolar epithelial cells after infection Burkholderia cenocepacia. [6]
         Butyricicoccus pullicaecorum (firmicutes) MIC00293
             Description Supernatant of Butyricicoccus pullicaecorum prevented the increase in IL-8 secretion induced by TNF-alpha and interferon-gamma. [7]
         Campylobacter coli (epsilon-proteobacteria) MIC00301
             Description Campylobacter coli could affect the expression of IL-8(p=0.013.) [8]
         Chlamydia pneumoniae (chlamydias) MIC00350
             Description Chlamydophila pneumoniae could increase the expression of IL-8. [9]
         Chlamydia trachomatis (chlamydias) MIC00344
             Description IL-8 secretion by ECC-1 cells increased in response to live and heat-killed Chlamydia trachomatis. [10]
         Clostridioides difficile (firmicutes) MIC00396
             Description Clostridium difficile toxin induced the production of IL-8. [11]
         Clostridium sporosphaeroides (firmicutes) MIC00421
             Description IL-8 production in peripheral blood mononuclear cells was most efficiently stimulated by Clostridium sporosphaeroides. [12]
         Corynebacterium amycolatum (actinobacteria) MIC00450
             Description Corynebacterium amycolatum stimulated high IL-8 production. [13]
         Cronobacter sakazakii (enterobacteria) MIC00469
             Description The Cronobacter sakazakii-infected tissues secreted IL-8. [14]
         Desulfovibrio desulfuricans (delta-proteobacteria) MIC00495
             Description Desulfovibrio desulfuricans-derived lipopolysaccharides stimulated the release of IL-8 from endothelial cell. [15]
         Eikenella corrodens (beta-proteobacteria) MIC00525
             Description A slight stimulation of the IL-8 mRNA levels was seen when Eikenella corrodens was separated from KB cells by cell culture inserts. [16]
         Faecalibacterium prausnitzii (firmicutes) MIC00590
             Description Faecalibacterium prausnitzii is associated with IL-8. [17]
         Glaesserella parasuis (gamma-proteobacteria) MIC00654
             Description The cytokines interleukin (IL)-8 can participate in the inflammatory response to Haemophilus parasuis. [18]
         Granulicatella adiacens (firmicutes) MIC00645
             Description Granulicatella is positive correlation with IL-8 expression. [19]
         Haemophilus ducreyi (gamma-proteobacteria) MIC00650
             Description Haemophilus ducreyi stimulated secretion of IL-8 by keratinocytes. [20]
         Klebsiella aerogenes (enterobacteria) MIC00530
             Description Enterobacter aerogenes is associated with IL-8 expression. [21]
         Lactobacillus acidophilus (firmicutes) MIC00702
             Description The gene expression of IL8 in IECs was decreased by Lactobacillus acidophilus infection. [22]
         Lactobacillus crispatus (firmicutes) MIC00710
             Description Lactobacillus crispatus and its supernatant reduced IL-8 production in Chlamydia trachomatis-infected HeLa and J774 cells. [23]
         Lactobacillus gallinarum (firmicutes) MIC00715
             Description Lactobacillus gallinarum strains might possess an immunomodulatory component, which suppresses IL-8 secretion. [24]
         Lactobacillus jensenii (firmicutes) MIC00720
             Description Lactobacillus jensenii TL2937 was the strain with the highest capacity to down-regulate IL-8 production. [25]
         Leptotrichia goodfellowii (fusobacteria) MIC00762
             Description Leptotrichia could trigger the transcription expression level of IL-8. [26]
         Methylorubrum extorquens (alpha-proteobacteria) MIC00814
             Description The gene encoding IL-8 was up-regulated during Methylobacterium oryzae infection. [27]
         Mycobacterium leprae (actinobacteria) MIC00851
             Description Mycobacterium leprae is associated with CXCL8 expression. [28]
         Mycobacterium ulcerans (actinobacteria) MIC00852
             Description Mycobacterium marinum induce higher production of important chemok-ines such as CXCL8. [29]
         Mycobacterium sp. (actinobacteria) MIC00855
             Description ML1899 conserved in all mycobacterium sp. could up-regulated the expression of IL-8. [30]
         Mycoplasma genitalium (mycoplasmas) MIC00870
             Description There is no statistically significant differences in the levels of IL-8(p>0.05)in the Mollicutes infection with the health. [31]
         Prevotella bivia (CFB bacteria) MIC01007
             Description The increased IL8 levels in cervicovaginal fluid associated with the Prevotella bivia colonization. [32]
         Prevotella nanceiensis (CFB bacteria) MIC01018
             Description Prevotella nanceiensis could decrease the expression of IL-8. [32]
         Prevotella pallens (CFB bacteria) MIC01022
             Description Prevotella pallens could decrease the level of IL-8. [33]
         Shigella sonnei (enterobacteria) MIC01183
             Description Shigella sonnei could reduce pro-inflammatory immune responses such as IL-8. [34]
         Spirochaetes (bacteria) MIC01204
             Description Spirochaetes is associated with IL-8 expression. [35]
         Streptococcus gallolyticus (firmicutes) MIC01251
             Description Streptococcus gallolyticus could increase the expression of IL-8. [36]
         Streptococcus intermedius (firmicutes) MIC01255
             Description Streptococcus intermedius could induce the IL-8 expression. [37]
         Streptococcus salivarius (firmicutes) MIC01268
             Description Streptococcus salivarius released a low-molecular-weight soluble factors that significantly reduced the activation of IL-8 secretion in intestinal epithelial and immune cell lines. [38]
         Streptococcus thermophilus (firmicutes) MIC01272
             Description Chemokine CXCL8 is upregulated (11.26 0.27 fold )following Streptococcus thermophilus culture. [39]
         Streptococcus uberis (firmicutes) MIC01274
             Description The milk concentrations of IL-8 was elevated after challenged with Streptococcus uberis. [40]
         Streptomyces griseus (actinobacteria) MIC01280
             Description Streptomyces griseus chitinase showed higher level of IL-8 protein production and mRNA expression through chitinase enzymatic activity. [41]
         Tannerella forsythia (CFB bacteria) MIC01305
             Description Tannerella forsythia monocytes could produced IL-8. [42]
         Treponema lecithinolyticum (spirochaetes) MIC01323
             Description Treponema lecithinolyticum activated human monocytes and PDL cells to induce production of proinflammatory cytokines, such as IL-8. [43]
         Treponema maltophilum (spirochaetes) MIC01324
             Description Treponema maltophilum activated human monocytes and PDL cells to induce production of proinflammatory cytokines, such as IL-8. [43]
         Treponema socranskii (spirochaetes) MIC01326
             Description Treponema socranskii is associated with IL-8 expression. [44]
         Trueperella pyogenes (actinobacteria) MIC01335
             Description Trueperella pyogenes is associated with IL-8 expression. [45]
References
1 [CXCL8 (interleukin 8)--the key inflammatory mediator in chronic obstructive pulmonary disease]. Postepy Hig Med Dosw (Online). 2014;68:842-50. doi: 10.5604/17322693.1109219.
2 Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol. 2019 Oct;21(10):e13078. doi: 10.1111/cmi.13078. Epub 2019 Jul 17.
3 Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One. 2017 Mar 1;12(3):e0173004. doi: 10.1371/journal.pone.0173004. eCollection 2017.
4 Atopobium vaginae triggers an innate immune response in an in vitro model of bacterial vaginosis. Microbes Infect. 2008 Apr;10(4):439-46. doi: 10.1016/j.micinf.2008.01.004. Epub 2008 Jan 12.
5 The Combination of Bifidobacterium breve and Three Prebiotic Oligosaccharides Modifies Gut Immune and Endocrine Functions in Neonatal Mice. J Nutr. 2019 Feb 1;149(2):344-353. doi: 10.1093/jn/nxy248.
6 Using dendritic cells to evaluate how Burkholderia cenocepacia clonal isolates from a chronically infected cystic fibrosis patient subvert immune functions. Med Microbiol Immunol. 2017 Apr;206(2):111-123. doi: 10.1007/s00430-016-0488-4. Epub 2016 Dec 16.
7 Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 2013 Dec;62(12):1745-52. doi: 10.1136/gutjnl-2012-303611. Epub 2012 Dec 22.
8 Temporal induction of pro-inflammatory and regulatory cytokines in human peripheral blood mononuclear cells by Campylobacter jejuni and Campylobacter coli. PLoS One. 2017 Feb 14;12(2):e0171350. doi: 10.1371/journal.pone.0171350. eCollection 2017.
9 Chlamydia pneumoniae Infection and Inflammatory Diseases. For Immunopathol Dis Therap. 2016;7(3-4):237-254. doi: 10.1615/ForumImmunDisTher.2017020161.
10 Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine ECC-1 epithelial cells. Am J Reprod Immunol. 2017 Dec;78(6). doi: 10.1111/aji.12764. Epub 2017 Sep 16.
11 Role of proinflammatory CD68(+) mannose receptor(-) macrophages in peroxiredoxin-1 expression and in abdominal aortic aneurysms in humans.Arterioscler Thromb Vasc Biol. 2013 Feb;33(2):431-8. doi: 10.1161/ATVBAHA.112.300663. Epub 2012 Dec 13.
12 Cytokine response of human mononuclear cells induced by intestinal Clostridium species. Anaerobe. 2013 Feb;19:70-6. doi: 10.1016/j.anaerobe.2012.11.002. Epub 2012 Nov 17.
13 Cytokine Levels in the In Vitro Response of T Cells to Planktonic and Biofilm Corynebacterium amycolatum. Pol J Microbiol. 2019 Dec;68(4):457-464. doi: 10.33073/pjm-2019-045. Epub 2019 Oct 31.
14 Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response. Microb Pathog. 2016 Jan;90:55-63. doi: 10.1016/j.micpath.2015.11.014. Epub 2015 Nov 23.
15 Desulfovibrio desulfuricans lipopolysaccharides induce endothelial cell IL-6 and IL-8 secretion and E-selectin and VCAM-1 expression. Cell Mol Biol Lett. 2003;8(4):991-1003.
16 Interleukin-6 (IL-6) and IL-8 are induced in human oral epithelial cells in response to exposure to periodontopathic Eikenella corrodens. Infect Immun. 1999 Jan;67(1):384-94.
17 Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients. Front Microbiol. 2018 Jul 2;9:1451. doi: 10.3389/fmicb.2018.01451. eCollection 2018.
18 Haemophilus parasuis: infection, immunity and enrofloxacin. Vet Res. 2015 Oct 28;46:128. doi: 10.1186/s13567-015-0263-3.
19 The imbalance of gut microbiota and its correlation with plasma inflammatory cytokines in pemphigus vulgaris patients. Scand J Immunol. 2019 Sep;90(3):e12799. doi: 10.1111/sji.12799. Epub 2019 Jul 8.
20 The immune response to Haemophilus ducreyi resembles a delayed-type hypersensitivity reaction throughout experimental infection of human subjects. J Infect Dis. 1998 Dec;178(6):1688-97. doi: 10.1086/314489.
21 Immunological cross-reactivity between Enterobacter aerogenes and Klebsiella capsular polysaccharides. Microb Pathog. 1990 Aug;9(2):127-30. doi: 10.1016/0882-4010(90)90086-6.
22 Synbiotic Effects of the Dietary Fiber Long-Chain Inulin and Probiotic Lactobacillus acidophilus W37 Can be Caused by Direct, Synergistic Stimulation of Immune Toll-Like Receptors and Dendritic Cells. Mol Nutr Food Res. 2018 Jun 14;62(15):e1800251. doi: 10.1002/mnfr.201800251. Online ahead of print.
23 Lactobacillus crispatus mediates anti-inflammatory cytokine interleukin-10 induction in response to Chlamydia trachomatis infection in vitro. Int J Med Microbiol. 2015 Dec;305(8):815-27. doi: 10.1016/j.ijmm.2015.07.005. Epub 2015 Sep 5.
24 Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS One. 2014 Dec 5;9(12):e114277. doi: 10.1371/journal.pone.0114277. eCollection 2014.
25 Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus jensenii TL2937. Front Immunol. 2014 Jan 14;4:512. doi: 10.3389/fimmu.2013.00512. eCollection 2014 Jan 14.
26 Leptotrichia species in human infections II. J Oral Microbiol. 2017 Sep 15;9(1):1368848. doi: 10.1080/20002297.2017.1368848. eCollection 2017.
27 Bacteria in the adventitia of cardiovascular disease patients with and without rheumatoid arthritis. PLoS One. 2014 May 29;9(5):e98627. doi: 10.1371/journal.pone.0098627. eCollection 2014.
28 Host immune responses induced by specific Mycobacterium leprae antigens in an overnight whole-blood assay correlate with the diagnosis of paucibacillary leprosy patients in China. PLoS Negl Trop Dis. 2019 Apr 24;13(4):e0007318. doi: 10.1371/journal.pntd.0007318. eCollection 2019 Apr.
29 Mycobacterium marinum: a potential immunotherapy for Mycobacterium tuberculosis infection. Drug Des Devel Ther. 2013 Jul 29;7:669-80. doi: 10.2147/DDDT.S45197. Print 2013.
30 Molecular characterization and immunogenic function of ML1899 (LipG) of Mycobacterium leprae. J Med Microbiol. 2019 Nov;68(11):1629-1640. doi: 10.1099/jmm.0.001080.
31 Mycoplasma genitalium can modulate the local immune response in patients with endometriosis. Fertil Steril. 2018 Mar;109(3):549-560.e4. doi: 10.1016/j.fertnstert.2017.11.009. Epub 2018 Feb 7.
32 The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017 Aug;151(4):363-374. doi: 10.1111/imm.12760. Epub 2017 Jun 20.
33 Quorum sensing molecules regulate epithelial cytokine response and biofilm-related virulence of three Prevotella species. Anaerobe. 2018 Dec;54:128-135. doi: 10.1016/j.anaerobe.2018.09.001. Epub 2018 Sep 3.
34 The anti-apoptotic and anti-inflammatory effect of Lactobacillus acidophilus on Shigella sonnei and Vibrio cholerae interaction with intestinal epithelial cells: A comparison between invasive and non-invasive bacteria. PLoS One. 2018 Jun 6;13(6):e0196941. doi: 10.1371/journal.pone.0196941. eCollection 2018.
35 New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect. 2011 Apr;17(4):502-12. doi: 10.1111/j.1469-0691.2011.03460.x.
36 Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem Biophys Res Commun. 2018 Dec 2;506(4):907-911. doi: 10.1016/j.bbrc.2018.10.136. Epub 2018 Nov 2.
37 Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways. Cell Microbiol. 2008 Jan;10(1):262-76. doi: 10.1111/j.1462-5822.2007.01040.x. Epub 2007 Sep 20.
38 Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014 Feb;80(3):928-34. doi: 10.1128/AEM.03133-13. Epub 2013 Nov 22.
39 Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS One. 2020 Feb 11;15(2):e0228531. doi: 10.1371/journal.pone.0228531. eCollection 2020.
40 Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genomics. 2009 Nov 19;10:542. doi: 10.1186/1471-2164-10-542.
41 Chitinase induce the release of IL-8 in human airway epithelial cells, via Ca2+-dependent PKC and ERK pathways. Scand J Immunol. 2010 Jul;72(1):15-21. doi: 10.1111/j.1365-3083.2010.02404.x.
42 Immune response profiling of primary monocytes and oral keratinocytes to different Tannerella forsythia strains and their cell surface mutants. Mol Oral Microbiol. 2018 Apr;33(2):155-167. doi: 10.1111/omi.12208. Epub 2018 Feb 7.
43 Upregulation of intercellular adhesion molecule 1 and proinflammatory cytokines by the major surface proteins of Treponema maltophilum and Treponema lecithinolyticum, the phylogenetic group IV oral spirochetes associated with periodontitis and endodontic infections. Infect Immun. 2005 Jan;73(1):268-76. doi: 10.1128/IAI.73.1.268-276.2005.
44 Phenol/water extract of Treponema socranskii subsp. socranskii as an antagonist of Toll-like receptor 4 signalling. Microbiology. 2006 Feb;152(Pt 2):535-546. doi: 10.1099/mic.0.28470-0.
45 Quorum-sensing molecules N-acyl homoserine lactones inhibit Trueperella pyogenes infection in mouse model. Vet Microbiol. 2018 Jan;213:89-94. doi: 10.1016/j.vetmic.2017.11.029. Epub 2017 Nov 22.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.