General Information of HIF (ID: HIFM0128)
HIF Name
Interferon-10
HIF Synonym(s)
interleukin 10, IL10, CSIF, TGIF, GVHDS, IL-10, IL10A
HIF Classification
Cytokine (Cyt)
Molecular Function
Cytokine
Description IL-10. A cytokine derived from mononuclear phagocytes, T cells, and keratinocytes. [1]
Pfam Interleukin 10 (PF00726 )
Pathway African trypanosomiasis (hsa05143 )
Allograft rejection (hsa05330 )
Amoebiasis (hsa05146 )
Asthma (hsa05310 )
Autoimmune thyroid disease (hsa05320 )
C-type lectin receptor signaling pathway (hsa04625 )
Chagas disease (American trypanosomiasis) (hsa05142 )
Cytokine-cytokine receptor interaction (hsa04060 )
FoxO signaling pathway (hsa04068 )
Inflammatory bowel disease (IBD) (hsa05321 )
Intestinal immune network for IgA production (hsa04672 )
JAK-STAT signaling pathway (hsa04630 )
Leishmaniasis (hsa05140 )
Malaria (hsa05144 )
Pertussis (hsa05133 )
Staphylococcus aureus infection (hsa05150 )
Systemic lupus erythematosus (hsa05322 )
T cell receptor signaling pathway (hsa04660 )
Toxoplasmosis (hsa05145 )
Tuberculosis (hsa05152 )
Viral protein interaction with cytokine and cytokine receptor (hsa04061 )
Yersinia infection (hsa05135 )
Sequence Click here to download the HIF sequence in FASTA format
External Links
Uniprot ID
IL10_HUMAN
Microbe Species (MIC) Regulated by This HIF
         Actinobacillus pleuropneumoniae (gamma-proteobacteria) MIC00026
             Description The Actinobacillus pleuropneumoniae presence in the tonsils could elicite an increased IL-10 expression. [2]
         Akkermansia muciniphila (verrucomicrobia) MIC00056
             Description Akkermansia muciniphila could increase the level of IL-10 expression. [3]
         Bacteroides fragilis (CFB bacteria) MIC00158
             Description Bacteroides fragilis could induce IL-10-producing regulatory T(Treg) cells. [4]
         Bifidobacterium catenulatum (actinobacteria) MIC00211
             Description Bifidobacterium catenulatum can enhance the interferon- (IFN-) production by direct stimulation of peripheral blood mononuclear cells (PBMC). [5]
         Bifidobacterium longum (actinobacteria) MIC00232
             Description Bifidobacterium longum induced the highest IL-10 production by PBMC, showing significant differences in IL-10 production in the presence of Bifidobacterium infantis and the breast-fed mixture(p<0.05). [5]
         Bifidobacterium longum subsp. infantis (actinobacteria) MIC00215
             Description Bifidobacterium longum subsp. infantis can increase the cytokines IL-10 expression(p<0.05)in mouse colon tissue. [6]
         Bifidobacterium pseudocatenulatum (actinobacteria) MIC00219
             Description Bifidobacterium pseudocatenulatum could increase the expression of IL-10. [7]
         Bifidobacterium pseudolongum (actinobacteria) MIC00220
             Description Bifidobacterium pseudolongum is associated with IL-10 expression. [8]
         Bilophila wadsworthia (delta-proteobacteria) MIC00235
             Description The abundance of Bilophila is associated with the expression IL-10. [9]
         Brachyspira hyodysenteriae (spirochaetes) MIC00258
             Description Brachyspira colonized mice could secrete higher amounts of IL-10. [10]
         Campylobacter coli (epsilon-proteobacteria) MIC00301
             Description Campylobacter coli could increase the IL-10 expression. [11]
         Clostridium butyricum (firmicutes) MIC00388
             Description Clostridium butyricum CGMCC0313.1 might increase the IL-10 expression. [12]
         Clostridium sp. (firmicutes) MIC00418
             Description The increasing levels of unclassified Ruminococcaceae (also of the Clostridiales order) correlated negatively with expression of the pro-inflammatory cytokine IL-17. [13]
         Corynebacterium amycolatum (actinobacteria) MIC00450
             Description Corynebacterium amycolatum infection stimulated high IL-10 production. [14]
         Coxiella burnetii (gamma-proteobacteria) MIC00467
             Description The persistent Coxiella burnetii infection in mice over expressing IL-10. [15]
         Cyanobacteria (cyanobacteria) MIC00475
             Description The Cyanobacteria could induce the significant release of pro-inflammatory cytokines IL-10(p < 0.05). [16]
         Enterococcus durans (firmicutes) MIC00547
             Description Enterococcus durans can increase IL-10 secretion in response to LPS stimulation. [17]
         Enterococcus faecalis (firmicutes) MIC00548
             Description The IL-10 levels were significantly lower in Enterococcus faecalis wound infection. [18]
         Glaesserella parasuis (gamma-proteobacteria) MIC00654
             Description The protection conferred by NPAPT vaccines was enough to prevent an inflammatory reaction mediated by IL-10, making NPAPT antigen a suitable candidate to control Gl sser's disease caused by Haemophilus parasuis Nagasaki strain. [19]
         Helicobacter bilis (epsilon-proteobacteria) MIC00663
             Description Helicobacter bilis may secrete higher amounts of IL-10 expression. [10]
         Helicobacter cinaedi (epsilon-proteobacteria) MIC00665
             Description The levels of IL-10 were lower in the colonization by the Helicobacter cinaedi mutant. [20]
         Helicobacter hepaticus (epsilon-proteobacteria) MIC00666
             Description Helicobacter hepaticus proved that regulatory T cells directly inhibit the innate inflammatory response to lower bowel microbiota and delineated the critical role of IL-10. [21]
         Lactobacillus casei (firmicutes) MIC00707
             Description The impact of Lactobacillus casei on the composition of the cecal cytokines IL-10 is strain specific. [22]
         Lactobacillus crispatus (firmicutes) MIC00710
             Description The Lactobacillus crispatus specifically enhances the production of the IL-10 anti-inflammatory cytokine. [23]
         Lactobacillus farciminis (firmicutes) MIC00713
             Description There is a significantly increased the production of the anti-inflammatory cytokine IL-10(P<0.05) after treatment with Zymomonas mobilis. [24]
         Lactobacillus fermentum (firmicutes) MIC00714
             Description Lactobacillus fermentum infection could increase IL-10 expression. [25]
         Lactobacillus gallinarum (firmicutes) MIC00715
             Description Lactobacillus plantarum WCFS1 induced considerably higher amounts of IL-10 expression. [26]
         Lactobacillus gasseri (firmicutes) MIC00716
             Description Lactobacillus gasseri infection could increase the production of IL-10. [27]
         Lactobacillus johnsonii (firmicutes) MIC00721
             Description Lactobacillus johnsonii recolonization could maintain colonic IL-10 production. [28]
         Lactobacillus kefiranofaciens (firmicutes) MIC00723
             Description Lactobacillus kefiranofaciens may slightly increased the IL-10 expression. [29]
         Lactobacillus paraplantarum (firmicutes) MIC00727
             Description The abundance of Lactobacillus paraplantarum was associated with IL-10 expression. [30]
         Lactobacillus pentosus (firmicutes) MIC00728
             Description Lactobacillus pentosus KF340 induced a regulatory phenotype which, in turn, induced IL-10 producing Tr1 cells from naive CD4+ T cells. [31]
         Lactobacillus salivarius (firmicutes) MIC00735
             Description Lactobacillus salivarius diminished proinflammatory activity by enhancing the production of IL10. [32]
         Leptotrichia goodfellowii (fusobacteria) MIC00762
             Description Leptotrichia could trigger the transcription expression level of IL-10. [33]
         Listeria monocytogenes (firmicutes) MIC00771
             Description The IL-10 levels were lower with a weakened activation response to Listeria monocytogenes infection in Hdac6-deficient dendritic cells. [34]
         Mycobacterium ulcerans (actinobacteria) MIC00852
             Description Mycobacterium marinum infection induced increased production of IL-10 expression. [35]
         Neisseria lactamica (beta-proteobacteria) MIC00888
             Description Neisseria lactamica infection increases the IL-10 expression. [36]
         Neisseria meningitidis (beta-proteobacteria) MIC00891
             Description Acute infection with Neisseria meningitidis,the IL-10 expression could be increased. [37]
         Nocardia farcinica (actinobacteria) MIC00915
             Description The recombinant Nocardia farcinica Mce1E can stimulate spleen lymphocytes of Nocardia farcinica-infected mice,but it not can express IL-10. [38]
         Paeniclostridium sordellii (firmicutes) MIC00417
             Description Stimulation of mononuclear cells with Clostridium sordellii induced production of the immunoregulatory cytokine IL-10 (50.614.03 ng/ml). [39]
         Parabacteroides distasonis (CFB bacteria) MIC00949
             Description The increase production in IL-10 in the Parabacteroides distasonis colon from PBS-treated healthy mice. [40]
         Peptostreptococcus anaerobius (firmicutes) MIC00980
             Description Levels of IL-10 were upregulated in Peptostreptococcus anaerobius infection. [41]
         Prevotella salivae (CFB bacteria) MIC01023
             Description Prevotella salivae reduced the production of IL10 cytokines in monocyte derived dendritic cells. [42]
         Pseudomonas sp. (gamma-proteobacteria) MIC01053
             Description Gene expression of anti-inflammatory cytokine IL-10 was consistently and significantly induced by Pseudomonas plecoglossicida infection. [43]
         Rickettsia rickettsii (alpha-proteobacteria) MIC01109
             Description The polypeptides, especially GWP, could induce a Th1-type immune response against Rickettsia rickettsii infection and stimulated CD4+ T cells from infected mice secreted significantly higher levels of IL-10. [44]
         Roseburia faecis (firmicutes) MIC01116
             Description The mRNA expression levels of L-10 negatively correlated (p < 0.05) with the abundance of OTU related to Roseburia faecis. [45]
         Staphylococcus aureus (firmicutes) MIC01208
             Description Staphylococcus aureus specific Th17 cells initially produced IL-17 and additionally IL-10 upon restimulation. [46]
         Streptococcus dysgalactiae (firmicutes) MIC01247
             Description The highest IL-10 level contributes to macrophages activation or internalization of Streptococcus dysgalactiae mice. [47]
         Streptococcus gordonii (firmicutes) MIC01252
             Description Stimulation with Streptococcus gordonii elicited the expression of IL-10. [48]
         Streptococcus salivarius (firmicutes) MIC01268
             Description The frequency of tumor-infiltrating Streptococcus salivarius-specific cytotoxic CD8 T cell was inversely correlated with the level of IL-10 secretion. [49]
         Streptococcus thermophilus (firmicutes) MIC01272
             Description Streptococcus thermophilus 285 infection could upregulated IL-10 expression. [50]
         Streptococcus uberis (firmicutes) MIC01274
             Description Streptococcus uberis infection could up-regulated IL-10 expression. [51]
         Subdoligranulum variabile (firmicutes) MIC01286
             Description After stimulation with Subdoligranulum variabile, IL-10 release from PI-IBS patients was significantly increased. [52]
         Treponema denticola (spirochetes) MIC01322
             Description Treponema denticola could stimulate the production of IL-10 through increasing enzyme activity. [53]
         Veillonella parvula (firmicutes) MIC01365
             Description A specific p38 MAPK inhibitor strongly inhibited Veillonella parvula LPS-induced IL-10 through reducing enzyme activity. [54]
         Verrucomicrobia (verrucomicrobia) MIC01368
             Description Verrucomicrobia are associated with increased expression levels of the regulatory cytokines IL10. [13]
         Yersinia pestis (enterobacteria) MIC01401
             Description Yersinia pestis can suppress the production of cytokines and chemokines IL-10 through reducing enzyme activity. [55]
References
1 The regulation of IL-10 production by immune cells.Nat Rev Immunol. 2010 Mar;10(3):170-81. doi: 10.1038/nri2711. Epub 2010 Feb 15.
2 Actinobacillus pleuropneumoniae triggers IL-10 expression in tonsils to mediate colonisation and persistence of infection in pigs. Vet Immunol Immunopathol. 2018 Nov;205:17-23. doi: 10.1016/j.vetimm.2018.10.008. Epub 2018 Oct 22.
3 Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One. 2017 Mar 1;12(3):e0173004. doi: 10.1371/journal.pone.0173004. eCollection 2017.
4 Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017 Feb;20(2):145-155. doi: 10.1038/nn.4476. Epub 2017 Jan 16.
5 Immunostimulatory effect of faecal Bifidobacterium species of breast-fed and formula-fed infants in a peripheral blood mononuclear cell/Caco-2 co-culture system. Br J Nutr. 2011 Oct;106(8):1216-23. doi: 10.1017/S0007114511001656. Epub 2011 May 31.
6 Bifidobacterium infantis Induces Protective Colonic PD-L1 and Foxp3 Regulatory T Cells in an Acute Murine Experimental Model of Inflammatory Bowel Disease. Gut Liver. 2019 Mar 15;13(4):430-439. doi: 10.5009/gnl18316.
7 Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 attenuate D-galactosamine-induced liver injury by modifying the gut microbiota. Sci Rep. 2017 Aug 18;7(1):8770. doi: 10.1038/s41598-017-09395-8.
8 Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight. 2018 Oct 4;3(19):e121045. doi: 10.1172/jci.insight.121045.
9 Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and Inflammatory Bowel Diseases. Dig Dis. 2015;33(3):351-6. doi: 10.1159/000371687. Epub 2015 May 27.
10 Induction of differential immune reactivity to members of the flora of gnotobiotic mice following colonization with Helicobacter bilis or Brachyspira hyodysenteriae. Microbes Infect. 2006 May;8(6):1602-10. doi: 10.1016/j.micinf.2006.01.019. Epub 2006 Apr 18.
11 Temporal induction of pro-inflammatory and regulatory cytokines in human peripheral blood mononuclear cells by Campylobacter jejuni and Campylobacter coli. PLoS One. 2017 Feb 14;12(2):e0171350. doi: 10.1371/journal.pone.0171350. eCollection 2017.
12 Clostridium butyricum CGMCC0313.1 Protects against Autoimmune Diabetes by Modulating Intestinal Immune Homeostasis and Inducing Pancreatic Regulatory T Cells. Front Immunol. 2017 Oct 19;8:1345. doi: 10.3389/fimmu.2017.01345. eCollection 2017.
13 Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Sci Rep. 2019 Sep 3;9(1):12674. doi: 10.1038/s41598-019-49081-5.
14 Cytokine Levels in the In Vitro Response of T Cells to Planktonic and Biofilm Corynebacterium amycolatum. Pol J Microbiol. 2019 Dec;68(4):457-464. doi: 10.33073/pjm-2019-045. Epub 2019 Oct 31.
15 Immune response and Coxiella burnetii invasion. Adv Exp Med Biol. 2012;984:287-98. doi: 10.1007/978-94-007-4315-1_15.
16 Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins (Basel). 2019 Apr 11;11(4):218. doi: 10.3390/toxins11040218.
17 Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate sIgA and to Increase Faecalibacterium prausnitzii Abundance. Front Immunol. 2017 Feb 10;8:88. doi: 10.3389/fimmu.2017.00088. eCollection 2017.
18 Enterococcus faecalis Modulates Immune Activation and Slows Healing During Wound Infection. J Infect Dis. 2017 Dec 19;216(12):1644-1654. doi: 10.1093/infdis/jix541.
19 Haemophilus parasuis: infection, immunity and enrofloxacin. Vet Res. 2015 Oct 28;46:128. doi: 10.1186/s13567-015-0263-3.
20 Alkyl hydroperoxide reductase is required for Helicobacter cinaedi intestinal colonization and survival under oxidative stress in BALB/c and BALB/c interleukin-10-/- mice. Infect Immun. 2012 Mar;80(3):921-8. doi: 10.1128/IAI.05477-11. Epub 2011 Dec 19.
21 Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer. Mucosal Immunol. 2011 Jan;4(1):22-30. doi: 10.1038/mi.2010.61. Epub 2010 Oct 13.
22 The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific. PLoS One. 2016 May 31;11(5):e0156374. doi: 10.1371/journal.pone.0156374. eCollection 2016.
23 Lactobacillus crispatus mediates anti-inflammatory cytokine interleukin-10 induction in response to Chlamydia trachomatis infection in vitro. Int J Med Microbiol. 2015 Dec;305(8):815-27. doi: 10.1016/j.ijmm.2015.07.005. Epub 2015 Sep 5.
24 Zymomonas mobilis culture protects against sepsis by modulating the inflammatory response, alleviating bacterial burden and suppressing splenocyte apoptosis. Eur J Pharm Sci. 2013 Jan 23;48(1-2):1-8. doi: 10.1016/j.ejps.2012.10.011. Epub 2012 Nov 2.
25 Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes. 2019;10(6):696-711. doi: 10.1080/19490976.2019.1589281. Epub 2019 Apr 3.
26 Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS One. 2014 Dec 5;9(12):e114277. doi: 10.1371/journal.pone.0114277. eCollection 2014.
27 Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe. 2017 Oct;47:137-144. doi: 10.1016/j.anaerobe.2017.05.013. Epub 2017 May 26.
28 Fecal Microbiota Transplantation, Commensal Escherichia coli and Lactobacillus johnsonii Strains Differentially Restore Intestinal and Systemic Adaptive Immune Cell Populations Following Broad-spectrum Antibiotic Treatment. Front Microbiol. 2017 Dec 11;8:2430. doi: 10.3389/fmicb.2017.02430. eCollection 2017.
29 Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 2006 Dec;36(5-6):254-60. doi: 10.1016/j.cyto.2007.01.003. Epub 2007 Mar 23.
30 Whole Body Vibration Triggers a Change in the Mutual Shaping State of Intestinal Microbiota and Body's Immunity. Front Bioeng Biotechnol. 2019 Nov 29;7:377. doi: 10.3389/fbioe.2019.00377. eCollection 2019.
31 Lactobacillus pentosus Modulates Immune Response by Inducing IL-10 Producing Tr1 Cells. Immune Netw. 2019 Dec 26;19(6):e39. doi: 10.4110/in.2019.19.e39. eCollection 2019 Dec.
32 Adhesion to pharyngeal epithelium and modulation of immune response: Lactobacillus salivarius AR809, a potential probiotic strain isolated from the human oral cavity. J Dairy Sci. 2019 Aug;102(8):6738-6749. doi: 10.3168/jds.2018-16117. Epub 2019 Jun 6.
33 Leptotrichia species in human infections II. J Oral Microbiol. 2017 Sep 15;9(1):1368848. doi: 10.1080/20002297.2017.1368848. eCollection 2017.
34 HDAC6 controls innate immune and autophagy responses to TLR-mediated signalling by the intracellular bacteria Listeria monocytogenes. PLoS Pathog. 2017 Dec 27;13(12):e1006799. doi: 10.1371/journal.ppat.1006799. eCollection 2017 Dec.
35 Mycobacterium marinum: a potential immunotherapy for Mycobacterium tuberculosis infection. Drug Des Devel Ther. 2013 Jul 29;7:669-80. doi: 10.2147/DDDT.S45197. Print 2013.
36 The PorB porin from commensal Neisseria lactamica induces Th1 and Th2 immune responses to ovalbumin in mice and is a potential immune adjuvant. Vaccine. 2008 Feb 6;26(6):786-96. doi: 10.1016/j.vaccine.2007.11.080. Epub 2007 Dec 26.
37 Cellular immune responses to Neisseria meningitidis in children. Infect Immun. 1999 May;67(5):2452-63.
38 Cloning, Expression, Invasion, and Immunological Reactivity of a Mammalian Cell Entry Protein Encoded by the mce1 Operon of Nocardia farcinica. Front Microbiol. 2017 Feb 22;8:281. doi: 10.3389/fmicb.2017.00281. eCollection 2017.
39 Innate immune recognition of, and response to, Clostridium sordellii. Anaerobe. 2010 Apr;16(2):125-30. doi: 10.1016/j.anaerobe.2009.06.004. Epub 2009 Jun 25.
40 Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol. 2011 Feb;163(2):250-9. doi: 10.1111/j.1365-2249.2010.04286.x. Epub 2010 Nov 19.
41 Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol. 2019 Dec;4(12):2319-2330. doi: 10.1038/s41564-019-0541-3. Epub 2019 Sep 9.
42 The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017 Aug;151(4):363-374. doi: 10.1111/imm.12760. Epub 2017 Jun 20.
43 Immune and gut bacterial successions of large yellow croaker (Larimichthys crocea) during Pseudomonas plecoglossicida infection. Fish Shellfish Immunol. 2020 Apr;99:176-183. doi: 10.1016/j.fsi.2020.01.063. Epub 2020 Feb 1.
44 Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine. 2017 Dec 18;35(51):7204-7212. doi: 10.1016/j.vaccine.2017.09.068. Epub 2017 Oct 10.
45 Effects of Intranasal Pseudorabies Virus AH02LA Infection on Microbial Community and Immune Status in the Ileum and Colon of Piglets. Viruses. 2019 Jun 5;11(6):518. doi: 10.3390/v11060518.
46 Immune control of Staphylococcus aureus - regulation and counter-regulation of the adaptive immune response. Int J Med Microbiol. 2014 Mar;304(2):204-14. doi: 10.1016/j.ijmm.2013.11.008. Epub 2013 Dec 1.
47 Identification and characterization of CD4+ T-cell epitopes on GapC protein of Streptococcus dysgalactiae. Microb Pathog. 2016 Feb;91:46-53. doi: 10.1016/j.micpath.2015.11.025. Epub 2015 Nov 30.
48 Synergistic BM-DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor. Mol Immunol. 2009 May;46(8-9):1883-91. doi: 10.1016/j.molimm.2009.02.008. Epub 2009 Mar 10.
49 Streptococcus salivarius-mediated CD8(+) T cell stimulation required antigen presentation by macrophages in oral squamous cell carcinoma. Exp Cell Res. 2018 May 15;366(2):121-126. doi: 10.1016/j.yexcr.2018.03.007. Epub 2018 Mar 9.
50 Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS One. 2020 Feb 11;15(2):e0228531. doi: 10.1371/journal.pone.0228531. eCollection 2020.
51 Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genomics. 2009 Nov 19;10:542. doi: 10.1186/1471-2164-10-542.
52 Cytokine Response after Stimulation with Key Commensal Bacteria Differ in Post-Infectious Irritable Bowel Syndrome (PI-IBS) Patients Compared to Healthy Controls. PLoS One. 2015 Sep 14;10(9):e0134836. doi: 10.1371/journal.pone.0134836. eCollection 2015.
53 Activation of the Innate Immune System by Treponema denticola Periplasmic Flagella through Toll-Like Receptor 2. Infect Immun. 2017 Dec 19;86(1):e00573-17. doi: 10.1128/IAI.00573-17. Print 2018 Jan.
54 Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide. Clin Vaccine Immunol. 2009 Dec;16(12):1804-9. doi: 10.1128/CVI.00310-09. Epub 2009 Oct 14.
55 Immunology of Yersinia pestis Infection. Adv Exp Med Biol. 2016;918:273-292. doi: 10.1007/978-94-024-0890-4_10.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.