General Information of HIF (ID: HIFM0260)
HIF Name
Interferon gamma
HIF Synonym(s)
Interferon Gamma, Immune Interferon, IFNG, IFG, IFI
HIF Classification
Cytokine (Cyt)
Description Interferon gamma, a T-cell lymphokine, may play a critical role in the effective clinical response to Mycobacterium tuberculosis. [1]
Microbe Species (MIC) Regulated by This HIF
         Bacteroides sp. (CFB bacteria) MIC00176
             Description The abundance of Bacteroidaceae was associated with the level of IFN-Gamma. [2]
         Barnesiella intestinihominis (CFB bacteria) MIC00192
             Description Barnesiella intestinihominis augmented the proportions of IFN-Gamma-producing. [3]
         Bifidobacterium adolescentis (actinobacteria) MIC00205
             Description Bifidobacterium adolescentis could inhibite IFN-Gamma production. [4]
         Bifidobacterium breve (actinobacteria) MIC00210
             Description At the species level, Bifidobacterium breve is associated with IFN-Gamma. [5]
         Bifidobacterium catenulatum (actinobacteria) MIC00211
             Description Bifidobacterium catenulatum can enhance IFN-Gamma production. [4]
         Bifidobacterium longum (actinobacteria) MIC00232
             Description Bifidobacterium longum could inhibite IFN-Gamma production. [4]
         Bordetella bronchiseptica (beta-proteobacteria) MIC00245
             Description Bordetella bronchiseptica could mediate inhibition of IFN-Gamma production. [6]
         Brachyspira hyodysenteriae (spirochaetes) MIC00258
             Description The abundance of Brachyspira bilis may be associated with IFN-Gamma. [7]
         Brucella canis (alpha-proteobacteria) MIC00269
             Description The abundance of Brucella canis is associated with IFN-Gamma. [8]
         Brucella ovis (alpha-proteobacteria) MIC00273
             Description The abundance of Brucella ovis is associated with IFN-Gamma. [9]
         Brucella suis (alpha-proteobacteria) MIC00275
             Description This impairment of Brucella suis multiplication is due to both soluble factors released from activated gammadeltaT-cells (including TNF-alpha and IFN-gamma) and to a contact-dependent cytotoxicity directed against the infected cells. [10]
         Burkholderia pseudomallei (beta-proteobacteria) MIC00287
             Description Increased expression of proinflammatory cytokines IFN-gamma was confined primarily to the area with the pathogen Burkholderia pseudomallei within pyogranulomatous lesions. [11]
         Campylobacter coli (epsilon-proteobacteria) MIC00301
             Description An in vitro model of Campylobacter coli infection using healthy human gut explant showed marked induction of IFN-gamma with a modest increase of IL-22 and IL-17A levels. [12]
         Campylobacter jejuni (epsilon-proteobacteria) MIC00307
             Description Campylobacter jejuni infection with either strain resulted in elevated colonic IL-6, TNF and IFN-Gamma secretion. [13]
         Chlamydia abortus (chlamydias) MIC00347
             Description The abundance of Chlamydia abortus is associated with IFN-Gamma. [14]
         Chlamydia felis (chlamydias) MIC00349
             Description The abundance of Chlamydia felis is associated with IFN-Gamma. [15]
         Chlamydia pneumoniae (chlamydias) MIC00350
             Description Chlamydophila pneumoniae could increase the level of IFN-Gamma. [16]
         Clostridioides difficile (firmicutes) MIC00396
             Description Clostridium difficile toxin could induce the production of IFN-Gamma. [17]
         Clostridium butyricum (firmicutes) MIC00388
             Description Clostridium butyricum CGMCC0313.1 decreases systemic inflammation primarily by reducing IFN-gamma+CD4+ T cells. [18]
         Clostridium leptum (firmicutes) MIC00402
             Description Related cytokines (IFN-Gamma, IL-4, IL-5, IL-13, IL-17A, IL-17F, IL-21, IL-23) could be decrease in the OVA-sensitized fed-Clostridium leptum adult mice. [19]
         Clostridium sp. (firmicutes) MIC00418
             Description Clostridium was associated with TNF-Gamma. [20]
         Coxiella burnetii (gamma-proteobacteria) MIC00467
             Description The abundance of Coxiella burnetii is associated with IFN-Gamma. [21]
         Deltaproteobacteria (delta-proteobacteria) MIC00480
             Description Deltaproteobacteria could increase IFN-Gamma. [22]
         Desulfovibrio vulgaris (delta-proteobacteria) MIC00502
             Description Desulfovibrio vulgaris triggerd nitric oxide production at levels similar to those stimulated by the cytokine gamma interferon (IFN-). [23]
         Ehrlichia chaffeensis (alpha-proteobacteria) MIC00523
             Description The abundance of Ehrlichia chaffeensis is associated with IFN-Gamma. [24]
         Enterococcus faecalis (firmicutes) MIC00548
             Description Enterococcus faecalis is associated with IFN-Gamma. [25]
         Erysipelothrix rhusiopathiae (firmicutes) MIC00559
             Description The splenocytes from mice inoculated with a recombinant Erysipelothrix rhusiopathiae strain significantly induced IFN-Gamma upon stimulation with concanavalin A, showing that the recombinant poIL-18 produced by Erysipelothrix rhusiopathiaehas biological activity in vivo. [26]
         Eubacterium saphenum (firmicutes) MIC00579
             Description After injection of Eubacterium saphenum, the production of IFN-Gamma in CD4+/CD8+ T cells is rather low. [27]
         Faecalibacterium prausnitzii (firmicutes) MIC00590
             Description At the species level, Faecalibacterium prausnitzii is associated with IFN-Gamma. [28]
         Glaesserella parasuis (gamma-proteobacteria) MIC00654
             Description Increased IL-1alpha expression in lung has been reported in pigs undergoing severe Glasser s disease following Haemophilus parasuis infection, whereas IL-4, IL-10, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma were expressed in significantly higher levels in spleen, pharyngeal lymph nodes, lung and brain of survivors. [29]
         Haemophilus ducreyi (gamma-proteobacteria) MIC00650
             Description The abundance of Haemophilus ducreyi is associated with IFN-Gamma. [30]
         Helicobacter acinonychis (epsilon-proteobacteria) MIC00662
             Description Infection with Helicobacter pylori leads to activation of both Th1 and Th17 cells with subsequent production of IFN-Gamma, IL-17, and TNF-Alpha. [31]
         Klebsiella aerogenes (enterobacteria) MIC00530
             Description The abundance of Enterobacter aerogenes is associated with IFN-Gamma. [32]
         Lachnospiraceae (firmicutes) MIC00695
             Description Lachnospiraceae was associated with IFN-gamma. [33]
         Lactobacillus casei (firmicutes) MIC00707
             Description Lactobacillus casei was associated with IFNs. [34]
         Lactobacillus helveticus (firmicutes) MIC01410
             Description Nevertheless, all three strains Lactobacillus paracasei OFS 0291, Lactobacillus helveticus OFS 1515 andLactobacillus fermentum DR9 alleviated proinflammatory cytokines TNF-Alpha, IFN-Gamma and IL-1Beta as well as IL-4, the Thelper (Th) 2 cell promoter in the gut. [35]
         Lactobacillus kefiranofaciens (firmicutes) MIC00723
             Description The abundance of Lactobacillus kefiranofaciens may be associated with IFN-Gamma. [36]
         Lactobacillus paracasei (firmicutes) MIC00726
             Description Lactobacillus paracasei could increase the level of IFN-Gamma. [37]
         Lactobacillus pentosus (firmicutes) MIC00728
             Description Lactobacillus pentosus KF340 induced a regulatory phenotype which, in turn, induced IFN-gamma producing Tr1 cells from naive CD4+ T cells. [38]
         Lactobacillus reuteri (firmicutes) MIC00731
             Description Lactobacillus reuteri treatment also decreased the serum levels of the inflammatory cytokines KC, TNF-Alpha, IFN-Gamma, and IL-6 in the DSS colitis mice. [39]
         Leptospira borgpetersenii (spirochaetes) MIC00758
             Description The abundance of Leptospira borgpetersenii is associated with IFN-Gamma. [40]
         Leuconostoc mesenteroides (firmicutes) MIC00766
             Description Stimulation with heat-killed Leuconostoc mesenteroides subsp. mesenteroides in mouse splenocytes induced the expression of IFN-Gamma, which was dependent on IL-12 production by Leuconostoc mesenteroides subsp. mesenteroides. [41]
         Listeria monocytogenes (firmicutes) MIC00771
             Description At the species level, Listeria monocytogenes is associated with IFNGamma. [42]
         Methanobrevibacter smithii (euryarchaeotes) MIC00792
             Description The abundance of Methanobrevibacter smithii is associated with IFN-Gamma. [43]
         Mycobacterium leprae (actinobacteria) MIC00851
             Description 9 of 33 Mycobacterium leprae recombinant proteins could induce IFN-Gamma secretion in tuberculoid (TT)/borderline tuberculoid (BT) patients and HHCs by a WBA in a Brazilian population. [44]
         Mycobacterium sp. (actinobacteria) MIC00855
             Description ML1899 conserved in all mycobacterium sp.up-regulated IFN-gamma. [45]
         Mycobacterium tuberculosis (actinobacteria) MIC00857
             Description The importance of IFN-Gamma production by CD4+ cells is particularly relevant at the early stages of Mycobacterium tuberculosis infection. [46]
         Parascardovia denticolens (actinobacteria) MIC00858
             Description The abundance of Mycobacterium ulcerans is associated with IFN-Gamma. [47]
         Mycobacteroides abscessus (actinobacteria) MIC00845
             Description IFN-Gamma is essential against Mycobacterium abscessus in the murine model. [48]
         Mycoplasma genitalium (mycoplasmas) MIC00870
             Description At the class level, Mollicutes is associated with IFN-Gamma. [49]
         Neisseria lactamica (beta-proteobacteria) MIC00888
             Description The Th1 cytokines INF-Gamma and IL-12p70 were also augmented in response to Neisseria lactamica PorB. [50]
         Neisseria meningitidis (beta-proteobacteria) MIC00891
             Description The abundance of Neisseria meningitidis is associated with IFN-Gamma. [51]
         Nocardia farcinica (actinobacteria) MIC00915
             Description Nocardia farcinica could stimulate the expression of IFN-Gamma. [52]
         Pasteurella dagmatis (gamma-proteobacteria) MIC00966
             Description An attenuated Actinobacillus pleuropneumoniae serovar 1 live vaccine prototype stimulated gamma interferon (IFN-) production. [53]
         Peptostreptococcus anaerobius (firmicutes) MIC00980
             Description Peptostreptococcus anaerobius was associated with IFN-gamma. [54]
         Phenylobacterium (alpha-proteobacteria) MIC00985
             Description The abundance of Phenylobacterium is associated with IFN-Gamma. [55]
         Prevotella copri (CFB bacteria) MIC01010
             Description Prevotella copri is associated with IFN-Gamma. [56]
         Rhodobacter capsulatus (alpha-proteobacteria) MIC01089
             Description The abundance of Rhodobacter capsulatus is associated with IFN-Gamma. [57]
         Rickettsia rickettsii (alpha-proteobacteria) MIC01109
             Description Significantly higher levels of IFN-gamma or TNF-alpha secreted by CD4+ T cells from Rickettsia rickettsii-infected mice were detected after immunization with GWP. [58]
         Roseburia faecis (firmicutes) MIC01116
             Description The mRNA expression levels of IL-1Beta, IL-10, IFN-Gamma, and TNF-Alpha negatively correlated (p<0.05) with the abundance of OTU related to Roseburia faecis. [59]
         Streptococcus dysgalactiae (firmicutes) MIC01247
             Description The GapC protein is highly conserved surface dehydrogenase among Streptococcus dysgalactiae (S. dysgalactiae) and is shown to be involved in bacterial virulence. High levels of IFN-Gamma and IL-17A, as well as moderate levels of IL-10 and IL-4 were detected in CD4(+) T-cells isolated from both GapC and peptide-immunized mice in vivo, suggesting that GapC63-77 and GapC96-110 preferentially elicited polarized Th1/Th17-type responses. [60]
         Streptococcus salivarius (firmicutes) MIC01268
             Description Streptococcus salivarius could induce IFN-gamma. [61]
         Streptococcus thermophilus (firmicutes) MIC01272
             Description Streptococcus thermophilus 285 could upregulate IFN-Gamma. [62]
         Subdoligranulum variabile (firmicutes) MIC01286
             Description The abundance of Subdoligranulum variabile is associated with IFN-Gamma. [63]
         Tropheryma whipplei (actinobacteria) MIC01334
             Description Tropheryma whipplei could decrease IFN-Gamma. [64]
         Ureaplasma parvum (mycoplasmas) MIC01359
             Description The abundance of Ureaplasma parvum is associated with IFN-gamma. [65]
         Yersinia pestis (enterobacteria) MIC01401
             Description Specific CD8 T cellmediated protection against pneumonic plague (caused by Yersinia pestis Infection) is dependent on TNFAlpha and IFNGamma, but not on perforin. [66]
References
1 Comprehensive network map of interferon gamma signaling.J Cell Commun Signal. 2018 Dec;12(4):745-751. doi: 10.1007/s12079-018-0486-y. Epub 2018 Sep 6.
2 Treatment with Subcritical Water-Hydrolyzed Citrus Pectin Ameliorated Cyclophosphamide-Induced Immunosuppression and Modulated Gut Microbiota Composition in ICR Mice. Molecules. 2020 Mar 12;25(6):1302. doi: 10.3390/molecules25061302.
3 Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity. 2016 Oct 18;45(4):931-943. doi: 10.1016/j.immuni.2016.09.009. Epub 2016 Oct 4.
4 Immunostimulatory effect of faecal Bifidobacterium species of breast-fed and formula-fed infants in a peripheral blood mononuclear cell/Caco-2 co-culture system. Br J Nutr. 2011 Oct;106(8):1216-23. doi: 10.1017/S0007114511001656. Epub 2011 May 31.
5 The Combination of Bifidobacterium breve and Three Prebiotic Oligosaccharides Modifies Gut Immune and Endocrine Functions in Neonatal Mice. J Nutr. 2019 Feb 1;149(2):344-353. doi: 10.1093/jn/nxy248.
6 Respiratory Bordetella bronchiseptica Carriage is Associated with Broad Phenotypic Alterations of Peripheral CD4+CD25+ T Cells and Differentially Affects Immune Responses to Secondary Non-Infectious and Infectious Stimuli in Mice. Int J Mol Sci. 2018 Sep 1;19(9):2602. doi: 10.3390/ijms19092602.
7 Induction of differential immune reactivity to members of the flora of gnotobiotic mice following colonization with Helicobacter bilis or Brachyspira hyodysenteriae. Microbes Infect. 2006 May;8(6):1602-10. doi: 10.1016/j.micinf.2006.01.019. Epub 2006 Apr 18.
8 Brucella canis induces canine CD4(+) T cells multi-cytokine Th1/Th17 production via dendritic cell activation. Comp Immunol Microbiol Infect Dis. 2019 Feb;62:68-75. doi: 10.1016/j.cimid.2018.11.017. Epub 2018 Nov 30.
9 Modulation of the cellular immune response after oral or subcutaneous immunization with microparticles containing Brucella ovis antigens. J Control Release. 2002 Dec 13;85(1-3):237-46. doi: 10.1016/s0168-3659(02)00276-6.
10 The innate immune response against Brucella in humans. Vet Microbiol. 2002 Dec 20;90(1-4):383-94. doi: 10.1016/s0378-1135(02)00223-7.
11 Dysregulation of TNF- and IFN- expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei. BMC Immunol. 2020 Feb 3;21(1):5. doi: 10.1186/s12865-020-0333-9.
12 Temporal induction of pro-inflammatory and regulatory cytokines in human peripheral blood mononuclear cells by Campylobacter jejuni and Campylobacter coli. PLoS One. 2017 Feb 14;12(2):e0171350. doi: 10.1371/journal.pone.0171350. eCollection 2017.
13 Protease Activity of Campylobacter jejuni HtrA Modulates Distinct Intestinal and Systemic Immune Responses in Infected Secondary Abiotic IL-10 Deficient Mice. Front Cell Infect Microbiol. 2019 Mar 29;9:79. doi: 10.3389/fcimb.2019.00079. eCollection 2019.
14 Immune response to Chlamydophila abortus POMP91B protein in the context of different Pathogen Associated Molecular Patterns (PAMP); role of antigen in the orientation of immune response. Toxins (Basel). 2009 Dec;1(2):59-73. doi: 10.3390/toxins1020059. Epub 2009 Oct 13.
15 Vaccination against chlamydial infections of man and animals. Vet J. 2006 Mar;171(2):263-75. doi: 10.1016/j.tvjl.2004.09.006. Epub 2004 Nov 11.
16 Chlamydia pneumoniae Infection and Inflammatory Diseases. For Immunopathol Dis Therap. 2016;7(3-4):237-254. doi: 10.1615/ForumImmunDisTher.2017020161.
17 Hibernation is associated with depression of T-cell independent humoral immune responses in the 13-lined ground squirrel.Dev Comp Immunol. 2013 Mar;39(3):154-60. doi: 10.1016/j.dci.2012.11.004. Epub 2012 Nov 24.
18 Clostridium butyricum CGMCC0313.1 Protects against Autoimmune Diabetes by Modulating Intestinal Immune Homeostasis and Inducing Pancreatic Regulatory T Cells. Front Immunol. 2017 Oct 19;8:1345. doi: 10.3389/fimmu.2017.01345. eCollection 2017.
19 Early-Life Exposure to Clostridium leptum Causes Pulmonary Immunosuppression. PLoS One. 2015 Nov 13;10(11):e0141717. doi: 10.1371/journal.pone.0141717. eCollection 2015.
20 Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015 Feb 3;5:8096. doi: 10.1038/srep08096.
21 Immune response and Coxiella burnetii invasion. Adv Exp Med Biol. 2012;984:287-98. doi: 10.1007/978-94-007-4315-1_15.
22 Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation. Front Microbiol. 2017 Jun 22;8:1157. doi: 10.3389/fmicb.2017.01157. eCollection 2017.
23 Hybrid cluster proteins and flavodiiron proteins afford protection to Desulfovibrio vulgaris upon macrophage infection. J Bacteriol. 2013 Jun;195(11):2684-90. doi: 10.1128/JB.00074-13. Epub 2013 Apr 5.
24 Proteomic analysis of and immune responses to Ehrlichia chaffeensis lipoproteins. Infect Immun. 2008 Aug;76(8):3405-14. doi: 10.1128/IAI.00056-08. Epub 2008 May 19.
25 Enterococcus faecalis Modulates Immune Activation and Slows Healing During Wound Infection. J Infect Dis. 2017 Dec 19;216(12):1644-1654. doi: 10.1093/infdis/jix541.
26 Immunostimulatory effects of recombinant Erysipelothrix rhusiopathiae expressing porcine interleukin-18 in mice and pigs. Clin Vaccine Immunol. 2012 Sep;19(9):1393-8. doi: 10.1128/CVI.00342-12. Epub 2012 Jul 3.
27 Intraperitoneal immune cell responses to Eubacterium saphenum in mice. Microbiol Immunol. 2001;45(1):29-37. doi: 10.1111/j.1348-0421.2001.tb01271.x.
28 Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients. Front Microbiol. 2018 Jul 2;9:1451. doi: 10.3389/fmicb.2018.01451. eCollection 2018.
29 Haemophilus parasuis: infection, immunity and enrofloxacin. Vet Res. 2015 Oct 28;46:128. doi: 10.1186/s13567-015-0263-3.
30 The immune response to Haemophilus ducreyi resembles a delayed-type hypersensitivity reaction throughout experimental infection of human subjects. J Infect Dis. 1998 Dec;178(6):1688-97. doi: 10.1086/314489.
31 Recombinant Bacillus subtilis Spores Elicit Th1/Th17-Polarized Immune Response in a Murine Model of Helicobacter pylori Vaccination. Mol Biotechnol. 2015 Aug;57(8):685-91. doi: 10.1007/s12033-015-9859-0.
32 Immunological cross-reactivity between Enterobacter aerogenes and Klebsiella capsular polysaccharides. Microb Pathog. 1990 Aug;9(2):127-30. doi: 10.1016/0882-4010(90)90086-6.
33 Gut Mucosal and Fecal Microbiota Profiling Combined to Intestinal Immune System in Neonates Affected by Intestinal Ischemic Injuries. Front Cell Infect Microbiol. 2020 Feb 25;10:59. doi: 10.3389/fcimb.2020.00059. eCollection 2020.
34 The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific. PLoS One. 2016 May 31;11(5):e0156374. doi: 10.1371/journal.pone.0156374. eCollection 2016.
35 Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacol Res. 2019 Aug;146:104312. doi: 10.1016/j.phrs.2019.104312. Epub 2019 Jun 14.
36 Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 2006 Dec;36(5-6):254-60. doi: 10.1016/j.cyto.2007.01.003. Epub 2007 Mar 23.
37 Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity. Nutrients. 2017 May 31;9(6):558. doi: 10.3390/nu9060558.
38 Lactobacillus pentosus Modulates Immune Response by Inducing IL-10 Producing Tr1 Cells. Immune Netw. 2019 Dec 26;19(6):e39. doi: 10.4110/in.2019.19.e39. eCollection 2019 Dec.
39 Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells. Front Immunol. 2019 Jun 4;10:1235. doi: 10.3389/fimmu.2019.01235. eCollection 2019.
40 Evaluation of type 1 immune response in naive and vaccinated animals following challenge with Leptospira borgpetersenii serovar Hardjo: involvement of WC1(+) gammadelta and CD4 T cells. Infect Immun. 2002 Nov;70(11):6147-57. doi: 10.1128/iai.70.11.6147-6157.2002.
41 Induction of Th1 cytokines by Leuconostoc mesenteroides subsp. mesenteroides (KCTC 3100) under Th2-type conditions and the requirement of NF-kappaB and p38/JNK. Cytokine. 2009 May;46(2):283-9. doi: 10.1016/j.cyto.2009.02.005. Epub 2009 Mar 18.
42 HDAC6 controls innate immune and autophagy responses to TLR-mediated signalling by the intracellular bacteria Listeria monocytogenes. PLoS Pathog. 2017 Dec 27;13(12):e1006799. doi: 10.1371/journal.ppat.1006799. eCollection 2017 Dec.
43 Methanobrevibacter smithii archaeosomes-entrapped mzNL4-3 virus-like particles induce specific T helper 1-oriented cellular and humoral responses against HIV-1. Curr HIV Res. 2013 Sep;11(6):491-7. doi: 10.2174/1570162x11666131216125059.
44 Host immune responses induced by specific Mycobacterium leprae antigens in an overnight whole-blood assay correlate with the diagnosis of paucibacillary leprosy patients in China. PLoS Negl Trop Dis. 2019 Apr 24;13(4):e0007318. doi: 10.1371/journal.pntd.0007318. eCollection 2019 Apr.
45 Molecular characterization and immunogenic function of ML1899 (LipG) of Mycobacterium leprae. J Med Microbiol. 2019 Nov;68(11):1629-1640. doi: 10.1099/jmm.0.001080.
46 Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr. 2019 Aug 27;7:350. doi: 10.3389/fped.2019.00350. eCollection 2019.
47 Immune response to infection with Mycobacterium ulcerans. Infect Immun. 2001 Mar;69(3):1704-7. doi: 10.1128/IAI.69.3.1704-1707.2001.
48 Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease. Am J Respir Cell Mol Biol. 2010 Oct;43(4):387-93. doi: 10.1165/rcmb.2009-0276TR. Epub 2010 Jan 15.
49 Mycoplasma genitalium can modulate the local immune response in patients with endometriosis. Fertil Steril. 2018 Mar;109(3):549-560.e4. doi: 10.1016/j.fertnstert.2017.11.009. Epub 2018 Feb 7.
50 The PorB porin from commensal Neisseria lactamica induces Th1 and Th2 immune responses to ovalbumin in mice and is a potential immune adjuvant. Vaccine. 2008 Feb 6;26(6):786-96. doi: 10.1016/j.vaccine.2007.11.080. Epub 2007 Dec 26.
51 Cellular immune responses to Neisseria meningitidis in children. Infect Immun. 1999 May;67(5):2452-63.
52 Cloning, Expression, Invasion, and Immunological Reactivity of a Mammalian Cell Entry Protein Encoded by the mce1 Operon of Nocardia farcinica. Front Microbiol. 2017 Feb 22;8:281. doi: 10.3389/fmicb.2017.00281. eCollection 2017.
53 The live attenuated Actinobacillus pleuropneumoniae triple-deletion mutant apxIC apxIIC apxIV-ORF1 strain, SLW05, Immunizes pigs against lethal challenge with Haemophilus parasuis. Clin Vaccine Immunol. 2013 Feb;20(2):134-9. doi: 10.1128/CVI.00458-12. Epub 2012 Dec 5.
54 Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol. 2019 Dec;4(12):2319-2330. doi: 10.1038/s41564-019-0541-3. Epub 2019 Sep 9.
55 Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog. 2013 Aug 30;5(1):26. doi: 10.1186/1757-4749-5-26.
56 Evidence of the Immune Relevance of Prevotella copri, a Gut Microbe, in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2017 May;69(5):964-975. doi: 10.1002/art.40003. Epub 2017 Apr 7.
57 Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect Immun. 1990 Nov;58(11):3743-50.
58 Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine. 2017 Dec 18;35(51):7204-7212. doi: 10.1016/j.vaccine.2017.09.068. Epub 2017 Oct 10.
59 Effects of Intranasal Pseudorabies Virus AH02LA Infection on Microbial Community and Immune Status in the Ileum and Colon of Piglets. Viruses. 2019 Jun 5;11(6):518. doi: 10.3390/v11060518.
60 Identification and characterization of CD4+ T-cell epitopes on GapC protein of Streptococcus dysgalactiae. Microb Pathog. 2016 Feb;91:46-53. doi: 10.1016/j.micpath.2015.11.025. Epub 2015 Nov 30.
61 Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014 Feb;80(3):928-34. doi: 10.1128/AEM.03133-13. Epub 2013 Nov 22.
62 Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS One. 2020 Feb 11;15(2):e0228531. doi: 10.1371/journal.pone.0228531. eCollection 2020.
63 Cytokine Response after Stimulation with Key Commensal Bacteria Differ in Post-Infectious Irritable Bowel Syndrome (PI-IBS) Patients Compared to Healthy Controls. PLoS One. 2015 Sep 14;10(9):e0134836. doi: 10.1371/journal.pone.0134836. eCollection 2015.
64 Peripheral T-Cell Reactivity to Heat Shock Protein 70 and Its Cofactor GrpE from Tropheryma whipplei Is Reduced in Patients with Classical Whipple's Disease. Infect Immun. 2017 Jul 19;85(8):e00363-17. doi: 10.1128/IAI.00363-17. Print 2017 Aug.
65 Different inflammatory responses are associated with Ureaplasma parvum-induced UTI and urolith formation. BMC Infect Dis. 2009 Jan 26;9:9. doi: 10.1186/1471-2334-9-9.
66 Immunology of Yersinia pestis Infection. Adv Exp Med Biol. 2016;918:273-292. doi: 10.1007/978-94-024-0890-4_10.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.