General Information of HIF (ID: HIFM0151)
HIF Name
Interferon-6
HIF Synonym(s)
interleukin 6, IL6, CDF, HGF, HSF, BSF2, IL-6, BSF-2, IFNB2, IFN-beta-2
HIF Classification
Cytokine (Cyt)
Molecular Function
Cytokine; Growth factor
Description IL-6 which is a key substance that mediates inflammatory response in human body is mainly manifested in regulating physiological activities of various immune cells and controlling immune response. [1]
Pfam Interleukin-6/G-CSF/MGF family (PF00489 )
Pathway AGE-RAGE signaling pathway in diabetic complications (hsa04933 )
African trypanosomiasis (hsa05143 )
Alzheimer disease (hsa05010 )
Amoebiasis (hsa05146 )
Antifolate resistance (hsa01523 )
C-type lectin receptor signaling pathway (hsa04625 )
Cellular senescence (hsa04218 )
Chagas disease (American trypanosomiasis) (hsa05142 )
Cytokine-cytokine receptor interaction (hsa04060 )
Cytosolic DNA-sensing pathway (hsa04623 )
EGFR tyrosine kinase inhibitor resistance (hsa01521 )
Epstein-Barr virus infection (hsa05169 )
FoxO signaling pathway (hsa04068 )
Graft-versus-host disease (hsa05332 )
HIF-1 signaling pathway (hsa04066 )
Hematopoietic cell lineage (hsa04640 )
Hepatitis B (hsa05161 )
Herpes simplex virus 1 infection (hsa05168 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Human cytomegalovirus infection (hsa05163 )
Hypertrophic cardiomyopathy (HCM) (hsa05410 )
IL-17 signaling pathway (hsa04657 )
Inflammatory bowel disease (IBD) (hsa05321 )
Influenza A (hsa05164 )
Insulin resistance (hsa04931 )
Intestinal immune network for IgA production (hsa04672 )
JAK-STAT signaling pathway (hsa04630 )
Kaposi sarcoma-associated herpesvirus infection (hsa05167 )
Legionellosis (hsa05134 )
Malaria (hsa05144 )
Measles (hsa05162 )
NOD-like receptor signaling pathway (hsa04621 )
Non-alcoholic fatty liver disease (NAFLD) (hsa04932 )
PI3K-Akt signaling pathway (hsa04151 )
Pathogenic Escherichia coli infection (hsa05130 )
Pathways in cancer (hsa05200 )
Pertussis (hsa05133 )
Prion diseases (hsa05020 )
Rheumatoid arthritis (hsa05323 )
Salmonella infection (hsa05132 )
TNF signaling pathway (hsa04668 )
Th17 cell differentiation (hsa04659 )
Toll-like receptor signaling pathway (hsa04620 )
Transcriptional misregulation in cancer (hsa05202 )
Tuberculosis (hsa05152 )
Viral protein interaction with cytokine and cytokine receptor (hsa04061 )
Yersinia infection (hsa05135 )
Sequence Click here to download the HIF sequence in FASTA format
External Links
Uniprot ID
IL6_HUMAN
Microbe Species (MIC) Regulated by This HIF
         Acidobacteria (bacteria) MIC00011
             Description Acidobacteria is associated with IL-6 expression. [2]
         Aggregatibacter aphrophilus (gamma-proteobacteria) MIC00052
             Description Aggregatibacter is associated with IL-6 expression. [3]
         Akkermansia muciniphila (verrucomicrobia) MIC00056
             Description Akkermansia muciniphila induced higher levels of IL-6. [4]
         Alistipes finegoldii (CFB bacteria) MIC00064
             Description Alistipes abundance was negatively correlated with IL-6 expression. [5]
         Aspergillus fumigatus (ascomycetes) MIC00103
             Description Aspergillus fumigatus could reduce gene expression and secretion of IL-6. [6]
         Atopobium vaginae (actinobacteria) MIC00110
             Description IL-6 was secreted by vaginal epithelial cells in response to the activity of Atopobium vaginae. [7]
         Bacillus licheniformis (firmicutes) MIC00132
             Description Bacillus licheniformis could higher expression level of IL-6. [8]
         Bacillus subtilis (firmicutes) MIC00136
             Description Bacillus subtilis could higher expression level of IL-6. [8]
         Bacteroides sp. (CFB bacteria) MIC00176
             Description Bacteroidaceae is associated with IL-6 expression. [9]
         Bacteroides uniformis (CFB bacteria) MIC00184
             Description Bacteroidia is associated with IL-6 expression. [10]
         Bifidobacterium longum (actinobacteria) MIC00232
             Description Bifidobacterium longum stimulated PBMC to produce high levels of IL-6. [11]
         Bifidobacterium pseudolongum (actinobacteria) MIC00220
             Description Bifidobacterium pseudolongum induced less amounts of the proinflammatory cytokines IL-6. [12]
         Brucella suis (alpha-proteobacteria) MIC00275
             Description Brucella suis-infected macrophages produced IL-6. [13]
         Burkholderia cenocepacia (beta-proteobacteria) MIC00280
             Description Burkholderia cenocepacia could increase the expression of IL-6. [14]
         Campylobacter coli (epsilon-proteobacteria) MIC00301
             Description Campylobacter coli could increase the expression of IL-6. [15]
         Campylobacter jejuni (epsilon-proteobacteria) MIC00307
             Description Campylobacter jejuni infection resulted in elevated colonic IL-6 secretion. [16]
         Capnocytophaga ochracea (CFB bacteria) MIC00328
             Description Capnocytophaga ochracea could kill or inactivate enzymatic activity to inhibite the IL-6 expression. [17]
         Chlamydia pneumoniae (chlamydias) MIC00350
             Description Chlamydophila pneumoniae could increase the expression of cytokines IL-6. [18]
         Chlorobi (chlorobi) MIC00351
             Description Chlorobi is associated with IL-6 expression. [2]
         Clostridiaceae (firmicutes) MIC00376
             Description Clostridiaceae is associated with IL-6 expression. [19]
         Clostridium sp. (firmicutes) MIC00418
             Description The increased abundance of Clostridium is associated with the increased levels of IL-6 in non-alcoholic fatty liver disease. [20]
         Cyanobacteria (cyanobacteria) MIC00475
             Description Cyanobacteria is associated with IL-6 expression. [21]
         Deltaproteobacteria (delta-proteobacteria) MIC00480
             Description Deltaproteobacteria has associations with the IL-6(p = 490;R2 = 0.070)in the heart tissue. [22]
         Desulfovibrio desulfuricans (delta-proteobacteria) MIC00495
             Description Desulfovibrio desulfuricans-derived lipopolysaccharides stimulated the release of IL-6 from endothelial cell. [23]
         Desulfovibrio sp. (delta-proteobacteria) MIC00493
             Description Desulfovibrio is associated with increased levels of IL-6 in ulcerative colitis patients. [24]
         Dorea sp. (firmicutes) MIC00513
             Description Dorea could cause the increased circulating levels of IL-6. [25]
         Edwardsiella tarda (enterobacteria) MIC00518
             Description Edwardsiella tarda is associated with IL-6 expression. [26]
         Eikenella corrodens (beta-proteobacteria) MIC00525
             Description A slight stimulation of the IL-6 mRNA levels was seen when Eikenella corrodens was separated from KB cells by cell culture inserts. [27]
         Eubacterium limosum (firmicutes) MIC00576
             Description Eubacterium limosum could produce the IL-6 expression. [28]
         Faecalibacterium prausnitzii (firmicutes) MIC00590
             Description Faecalibacterium prausnitzii is associated with IL-6. [29]
         Filifactor alocis (firmicutes) MIC00595
             Description Filifactor alocis elicited a local inflammatory response with neutrophils along with an increase in levels of IL-6. [30]
         Gardnerella vaginalis (actinobacteria) MIC00626
             Description Gardnerella vaginalis induce significantly higher levels of IL-6 than Lactobacillus species. [31]
         Glaesserella parasuis (gamma-proteobacteria) MIC00654
             Description High amounts of IL-6 were producd by CD163+ monocytes during highly virulent Haemophilus parasuis infection. [32]
         Granulicatella adiacens (firmicutes) MIC00645
             Description Granulicatella is positive correlation with IL-6 expression. [33]
         Klebsiella aerogenes (enterobacteria) MIC00530
             Description Enterobacter aerogenes is associated with IL-6 expression. [34]
         Lactobacillus acidophilus (firmicutes) MIC00702
             Description The gene expression of IL6 in IECs could be induced by Lactobacillus acidophilus infection. [35]
         Lactobacillus brevis (firmicutes) MIC00705
             Description Heat-killed Lactobacillus brevis promoted higher gene expression levels of IL-6. [36]
         Lactobacillus crispatus (firmicutes) MIC00710
             Description Lactobacillus crispatus and its supernatant reduced IL-6 production in Chlamydia trachomatis-infected HeLa and J774 cells. [37]
         Lactobacillus gallinarum (firmicutes) MIC00715
             Description Lactobacillus gallinarum WCFS1 induced considerably high amounts of IL-6. [38]
         Lactobacillus jensenii (firmicutes) MIC00720
             Description Lactobacillus jensenii TL2937 was the strain with the highest capacity to down-regulate IL-6 production. [39]
         Lactobacillus kefiranofaciens (firmicutes) MIC00723
             Description Lactobacillus kefiranofaciens could induce the IL-6 expression. [40]
         Lactobacillus plantarum (firmicutes) MIC00730
             Description Lactobacillus plantarum could stimulate the expression of the cytokines IL-6. [41]
         Lactobacillus reuteri (firmicutes) MIC00731
             Description Lactobacillus reuteri treatment could decrease the serum levels of the inflammatory cytokines IL-6. [42]
         Lactobacillus rhamnosus (firmicutes) MIC00732
             Description The combination of iSN34 from Lactobacillus rhamnosus GG could cause synergistic induction (in mouse splenocytes) of IL6. [43]
         Lactobacillus sp. (firmicutes) MIC00701
             Description Lactobacillaceae was negatively correlated with IL-6 expression. [44]
         Leptotrichia goodfellowii (fusobacteria) MIC00762
             Description Leptotrichia could trigger the transcription expression level of IL-6. [45]
         Listeria monocytogenes (firmicutes) MIC00771
             Description Listeria monocytogenes is associated with IL-6 expression. [46]
         Methylorubrum extorquens (alpha-proteobacteria) MIC00814
             Description The gene encoding IL-6 was up-regulated during Methylobacterium oryzae infection. [47]
         Mycobacterium sp. (actinobacteria) MIC00855
             Description ML1899 conserved in all mycobacterium sp. could up-regulated the expression of IL-6. [48]
         Mycoplasma genitalium (mycoplasmas) MIC00870
             Description There is no statistically significant differences in the levels of IL-1beta(p>0.05)in the Mollicutes infection with the health. [49]
         Mycoplasma pneumoniae (mycoplasmas) MIC00875
             Description Mycoplasma pneumoniae infection triggers secretion of several proinflammatory cytokines such as IL-6. [50]
         Mycoplasma synoviae (mycoplasmas) MIC00877
             Description Mycoplasma synoviae was able to induce the secretion of IL-6. [51]
         Oceanospirillales (gamma-proteobacteria) MIC00918
             Description Oceanospirillales was negatively correlated with IL-6 expression. [44]
         Oscillibacter valericigenes (firmicutes) MIC01961
             Description Oscillibacter abundance was significantly positively correlated with IL-6. [5]
         Parabacteroides distasonis (CFB bacteria) MIC00949
             Description Parabacteroides distasonis is associated with IL-6 expression. [52]
         Parasutterella excrementihominis (beta-proteobacteria) MIC00963
             Description Parasutterella is associated with increased levels of IL-6 in ulcerative colitis patients. [24]
         Pasteurella multocida (gamma-proteobacteria) MIC00967
             Description Pasteurella multocida was able to induce the subsequent immunomodulatory cytokines such as IL-6. [53]
         Plesiomonas shigelloides (enterobacteria) MIC00994
             Description The biological activities of Plesiomonas shigelloides lipid A can induce the productions of proinflammatory cytokines IL-6. [54]
         Prevotella pallens (CFB bacteria) MIC01022
             Description Prevotella pallens could increase the level of IL-6. [55]
         Propionibacterium sp. (actinobacteria) MIC01030
             Description Propionibacterium acnes could mediate proinflammatory cytokines, such as IL-6. [56]
         Proteobacteria (proteobacteria) MIC01037
             Description Increased abundance of the phyla Proteobacteria is associated with the enriched concentrations of IL-6 in serum. [57]
         Pseudobutyrivibrio (firmicutes) MIC01050
             Description Pseudobutyrivibrio could cause the increased circulating levels of IL-6. [25]
         Rhodococcus hoagii (actinobacteria) MIC01092
             Description Expression of IL-6 was significantly high(p<0.001)in bronchoalveolar macrophages during Rhodococcus equi infection. [58]
         Rickettsia rickettsii (alpha-proteobacteria) MIC01109
             Description Rickettsia rickettsii is associated with IL-6 expression. [59]
         Roseburia intestinalis (firmicutes) MIC01118
             Description Roseburia intestinalis led to a significant reduction in the protein expression of IL-6(P<0.01). [60]
         Ruminococcus gnavus (firmicutes) MIC01137
             Description Ruminococcus gnavus is associated with IL-6 expression. [61]
         Saccharomyces cerevisiae (budding yeasts) MIC01145
             Description Saccharomyces cerevisiae decreased the ETEC-induced IL-6 secretions in IPEC-1 cells. [62]
         Spirochaetes (bacteria) MIC01204
             Description Spirochaetes is associated with IL-6 expression. [63]
         Stenotrophomonas maltophilia (gamma-proteobacteria) MIC01231
             Description The vaccination with rOmpA significantly reduced the levels of IL-6(P<0.01) in BALF after respiratory Stenotrophomonas maltophilia challenge in mice. [64]
         Stenotrophomonas rhizophila (gamma-proteobacteria) MIC01232
             Description The expression levels of IL-6 significantly higher(P<0.0001) in Stenotrophomonas infection. [65]
         Streptococcus cristatus (firmicutes) MIC01246
             Description The RT-PCR confirmed the messenger RNA attenuation of IL-6 by Streptococcus cristatus. [66]
         Streptococcus gallolyticus (firmicutes) MIC01251
             Description Streptococcus gallolyticus infection could increase expression of IL-6. [67]
         Streptococcus gordonii (firmicutes) MIC01252
             Description Following co-stimulation with TNF and Streptococcus gordoniii, the synergistic induction of IL-6 could still be observed. [68]
         Streptococcus mitis (firmicutes) MIC01257
             Description Streptococcus mitis could reduce IL-6 protein levels. [69]
         Streptococcus pyogenes (firmicutes) MIC01267
             Description Streptococcus pyogenes induced inflammatory cytokines production of IL-6. [70]
         Streptococcus thermophilus (firmicutes) MIC01272
             Description Streptococcus thermophilus alters cytokine IL-6 expression levels(25.12 0.61 fold ) of peripheral blood mononuclear cell. [71]
         Streptococcus uberis (firmicutes) MIC01274
             Description The majority of genes with 1.5-fold change within IL-6 Signaling were up-regulated due to inoculated with the 5,000 cfu of Streptococcus uberis intramammary infection. [72]
         Tannerella forsythia (CFB bacteria) MIC01305
             Description Tannerella forsythia may induce pro-inflammatory cytokines such as IL-6. [73]
         Treponema denticola (spirochetes) MIC01322
             Description Treponema denticola could stimulate the production of IL-6. [74]
         Treponema lecithinolyticum (spirochaetes) MIC01323
             Description Treponema lecithinolyticum activated human monocytes and PDL cells to induce production of proinflammatory cytokines, such as IL-6. [75]
         Treponema maltophilum (spirochaetes) MIC01324
             Description Treponema maltophilum activated human monocytes and PDL cells to induce production of proinflammatory cytokines, such as IL-6. [75]
         Trueperella pyogenes (actinobacteria) MIC01335
             Description Trueperella pyogenes is associated with IL-6 expression. [76]
         Veillonella parvula (firmicutes) MIC01365
             Description Veillonella parvula lipopolysaccharide stimulated IL-6 release in human peripheral blood mononuclear cells (PBMC) in a dose-dependent manner. [77]
         Verrucomicrobia (verrucomicrobia) MIC01368
             Description Verrucomicrobia can induce the IL-6 expression. [78]
         Yersinia enterocolitica (enterobacteria) MIC01398
             Description Yersinia enterocolitica is associated with IL-6 expression. [79]
References
1 IL-6/IL-6 receptor system and its role in physiological and pathological conditions.Clin Sci (Lond). 2012 Feb;122(4):143-59. doi: 10.1042/CS20110340.
2 Study on the correlation among dysbacteriosis, imbalance of cytokine and the formation of intrauterine adhesion. Ann Transl Med. 2020 Feb;8(4):52. doi: 10.21037/atm.2019.11.124.
3 Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol. 2019 Oct;21(10):e13078. doi: 10.1111/cmi.13078. Epub 2019 Jul 17.
4 Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One. 2017 Mar 1;12(3):e0173004. doi: 10.1371/journal.pone.0173004. eCollection 2017.
5 Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol Res. 2019 Dec;150:104489. doi: 10.1016/j.phrs.2019.104489. Epub 2019 Nov 2.
6 Influence of Platelet-rich Plasma on the immune response of human monocyte-derived dendritic cells and macrophages stimulated with Aspergillus fumigatus. Int J Med Microbiol. 2017 Feb;307(2):95-107. doi: 10.1016/j.ijmm.2016.11.010. Epub 2016 Dec 9.
7 Atopobium vaginae triggers an innate immune response in an in vitro model of bacterial vaginosis. Microbes Infect. 2008 Apr;10(4):439-46. doi: 10.1016/j.micinf.2008.01.004. Epub 2008 Jan 12.
8 Immunostimulatory activity of Bacillus spores. FEMS Immunol Med Microbiol. 2008 Jul;53(2):195-203. doi: 10.1111/j.1574-695X.2008.00415.x. Epub 2008 Apr 21.
9 Treatment with Subcritical Water-Hydrolyzed Citrus Pectin Ameliorated Cyclophosphamide-Induced Immunosuppression and Modulated Gut Microbiota Composition in ICR Mice. Molecules. 2020 Mar 12;25(6):1302. doi: 10.3390/molecules25061302.
10 Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013 Jul 10;5(193):193ra91. doi: 10.1126/scitranslmed.3006438.
11 Immunostimulatory effect of faecal Bifidobacterium species of breast-fed and formula-fed infants in a peripheral blood mononuclear cell/Caco-2 co-culture system. Br J Nutr. 2011 Oct;106(8):1216-23. doi: 10.1017/S0007114511001656. Epub 2011 May 31.
12 Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight. 2018 Oct 4;3(19):e121045. doi: 10.1172/jci.insight.121045.
13 The innate immune response against Brucella in humans. Vet Microbiol. 2002 Dec 20;90(1-4):383-94. doi: 10.1016/s0378-1135(02)00223-7.
14 Using dendritic cells to evaluate how Burkholderia cenocepacia clonal isolates from a chronically infected cystic fibrosis patient subvert immune functions. Med Microbiol Immunol. 2017 Apr;206(2):111-123. doi: 10.1007/s00430-016-0488-4. Epub 2016 Dec 16.
15 Temporal induction of pro-inflammatory and regulatory cytokines in human peripheral blood mononuclear cells by Campylobacter jejuni and Campylobacter coli. PLoS One. 2017 Feb 14;12(2):e0171350. doi: 10.1371/journal.pone.0171350. eCollection 2017.
16 Protease Activity of Campylobacter jejuni HtrA Modulates Distinct Intestinal and Systemic Immune Responses in Infected Secondary Abiotic IL-10 Deficient Mice. Front Cell Infect Microbiol. 2019 Mar 29;9:79. doi: 10.3389/fcimb.2019.00079. eCollection 2019.
17 Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human toll-like receptor 4. Infect Immun. 2002 Jan;70(1):218-25. doi: 10.1128/iai.70.1.218-225.2002.
18 Chlamydia pneumoniae Infection and Inflammatory Diseases. For Immunopathol Dis Therap. 2016;7(3-4):237-254. doi: 10.1615/ForumImmunDisTher.2017020161.
19 Impact of probiotic Saccharomyces boulardii on the gut microbiome composition in HIV-treated patients: A double-blind, randomised, placebo-controlled trial. PLoS One. 2017 Apr 7;12(4):e0173802. doi: 10.1371/journal.pone.0173802. eCollection 2017.
20 Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015 Feb 3;5:8096. doi: 10.1038/srep08096.
21 Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins (Basel). 2019 Apr 11;11(4):218. doi: 10.3390/toxins11040218.
22 Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation. Front Microbiol. 2017 Jun 22;8:1157. doi: 10.3389/fmicb.2017.01157. eCollection 2017.
23 Desulfovibrio desulfuricans lipopolysaccharides induce endothelial cell IL-6 and IL-8 secretion and E-selectin and VCAM-1 expression. Cell Mol Biol Lett. 2003;8(4):991-1003.
24 Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. Int J Biol Macromol. 2020 Jun 15;153:708-722. doi: 10.1016/j.ijbiomac.2020.03.053. Epub 2020 Mar 10.
25 Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 2011 Mar;25(3):397-407. doi: 10.1016/j.bbi.2010.10.023. Epub 2010 Oct 30.
26 The influence of concentration of inactivated Edwardsiella tarda bacterin and immersion time on antigen uptake and expression of immune-related genes in Japanese flounder (Paralichthys olivaceus). Microb Pathog. 2017 Feb;103:19-28. doi: 10.1016/j.micpath.2016.12.011. Epub 2016 Dec 16.
27 Interleukin-6 (IL-6) and IL-8 are induced in human oral epithelial cells in response to exposure to periodontopathic Eikenella corrodens. Infect Immun. 1999 Jan;67(1):384-94.
28 Eubacterium limosum ameliorates experimental colitis and metabolite of microbe attenuates colonic inflammatory action with increase of mucosal integrity. World J Gastroenterol. 2006 Feb 21;12(7):1071-7. doi: 10.3748/wjg.v12.i7.1071.
29 Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients. Front Microbiol. 2018 Jul 2;9:1451. doi: 10.3389/fmicb.2018.01451. eCollection 2018.
30 Filifactor alocis infection and inflammatory responses in the mouse subcutaneous chamber model. Infect Immun. 2014 Mar;82(3):1205-12. doi: 10.1128/IAI.01434-13. Epub 2013 Dec 30.
31 Bacterial vaginosis and the cervicovaginal immune response. Am J Reprod Immunol. 2014 Jun;71(6):555-63. doi: 10.1111/aji.12264.
32 Haemophilus parasuis: infection, immunity and enrofloxacin. Vet Res. 2015 Oct 28;46:128. doi: 10.1186/s13567-015-0263-3.
33 The imbalance of gut microbiota and its correlation with plasma inflammatory cytokines in pemphigus vulgaris patients. Scand J Immunol. 2019 Sep;90(3):e12799. doi: 10.1111/sji.12799. Epub 2019 Jul 8.
34 Immunological cross-reactivity between Enterobacter aerogenes and Klebsiella capsular polysaccharides. Microb Pathog. 1990 Aug;9(2):127-30. doi: 10.1016/0882-4010(90)90086-6.
35 Synbiotic Effects of the Dietary Fiber Long-Chain Inulin and Probiotic Lactobacillus acidophilus W37 Can be Caused by Direct, Synergistic Stimulation of Immune Toll-Like Receptors and Dendritic Cells. Mol Nutr Food Res. 2018 Jun 14;62(15):e1800251. doi: 10.1002/mnfr.201800251. Online ahead of print.
36 Probiotic and Antioxidant Properties of Novel Lactobacillus brevis KCCM 12203P Isolated from Kimchi and Evaluation of Immune-Stimulating Activities of Its Heat-Killed Cells in RAW 264.7 Cells. J Microbiol Biotechnol. 2019 Dec 28;29(12):1894-1903. doi: 10.4014/jmb.1907.07081.
37 Lactobacillus crispatus mediates anti-inflammatory cytokine interleukin-10 induction in response to Chlamydia trachomatis infection in vitro. Int J Med Microbiol. 2015 Dec;305(8):815-27. doi: 10.1016/j.ijmm.2015.07.005. Epub 2015 Sep 5.
38 Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS One. 2014 Dec 5;9(12):e114277. doi: 10.1371/journal.pone.0114277. eCollection 2014.
39 Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus jensenii TL2937. Front Immunol. 2014 Jan 14;4:512. doi: 10.3389/fimmu.2013.00512. eCollection 2014 Jan 14.
40 Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 2006 Dec;36(5-6):254-60. doi: 10.1016/j.cyto.2007.01.003. Epub 2007 Mar 23.
41 Short communication: Complete genome sequence of Lactobacillus plantarum J26, a probiotic strain with immunomodulatory activity. J Dairy Sci. 2019 Dec;102(12):10838-10844. doi: 10.3168/jds.2019-16593. Epub 2019 Sep 20.
42 Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells. Front Immunol. 2019 Jun 4;10:1235. doi: 10.3389/fimmu.2019.01235. eCollection 2019.
43 Immune synergistic oligodeoxynucleotide from Lactobacillus rhamnosus GG enhances the immune response upon co-stimulation by bacterial and fungal cell wall components. Anim Sci J. 2018 Oct;89(10):1504-1511. doi: 10.1111/asj.13082. Epub 2018 Jul 23.
44 Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respir Res. 2019 Dec 3;20(1):272. doi: 10.1186/s12931-019-1246-0.
45 Leptotrichia species in human infections II. J Oral Microbiol. 2017 Sep 15;9(1):1368848. doi: 10.1080/20002297.2017.1368848. eCollection 2017.
46 HDAC6 controls innate immune and autophagy responses to TLR-mediated signalling by the intracellular bacteria Listeria monocytogenes. PLoS Pathog. 2017 Dec 27;13(12):e1006799. doi: 10.1371/journal.ppat.1006799. eCollection 2017 Dec.
47 Bacteria in the adventitia of cardiovascular disease patients with and without rheumatoid arthritis. PLoS One. 2014 May 29;9(5):e98627. doi: 10.1371/journal.pone.0098627. eCollection 2014.
48 Molecular characterization and immunogenic function of ML1899 (LipG) of Mycobacterium leprae. J Med Microbiol. 2019 Nov;68(11):1629-1640. doi: 10.1099/jmm.0.001080.
49 Mycoplasma genitalium can modulate the local immune response in patients with endometriosis. Fertil Steril. 2018 Mar;109(3):549-560.e4. doi: 10.1016/j.fertnstert.2017.11.009. Epub 2018 Feb 7.
50 NLRP3 Is a Critical Regulator of Inflammation and Innate Immune Cell Response during Mycoplasma pneumoniae Infection. Infect Immun. 2017 Dec 19;86(1):e00548-17. doi: 10.1128/IAI.00548-17. Print 2018 Jan.
51 Diacylated lipopeptide from Mycoplasma synoviae mediates TLR15 induced innate immune responses. Vet Res. 2013 Oct 17;44(1):99. doi: 10.1186/1297-9716-44-99.
52 Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol. 2011 Feb;163(2):250-9. doi: 10.1111/j.1365-2249.2010.04286.x. Epub 2010 Nov 19.
53 Pasteurella multocida and immune cells. Curr Top Microbiol Immunol. 2012;361:53-72. doi: 10.1007/82_2012_204.
54 Structure-Activity Relationship of Plesiomonas shigelloides Lipid A to the Production of TNF-, IL-1, and IL-6 by Human and Murine Macrophages. Front Immunol. 2017 Dec 11;8:1741. doi: 10.3389/fimmu.2017.01741. eCollection 2017.
55 Quorum sensing molecules regulate epithelial cytokine response and biofilm-related virulence of three Prevotella species. Anaerobe. 2018 Dec;54:128-135. doi: 10.1016/j.anaerobe.2018.09.001. Epub 2018 Sep 3.
56 Suppression of Propionibacterium acnes-Induced Skin Inflammation by Laurus nobilis Extract and Its Major Constituent Eucalyptol. Int J Mol Sci. 2019 Jul 17;20(14):3510. doi: 10.3390/ijms20143510.
57 Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomed Pharmacother. 2020 Jan;121:109591. doi: 10.1016/j.biopha.2019.109591. Epub 2019 Nov 13.
58 Effects of age and macrophage lineage on intracellular survival and cytokine induction after infection with Rhodococcus equi. Vet Immunol Immunopathol. 2014 Jul 15;160(1-2):41-50. doi: 10.1016/j.vetimm.2014.03.010. Epub 2014 Mar 29.
59 Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine. 2017 Dec 18;35(51):7204-7212. doi: 10.1016/j.vaccine.2017.09.068. Epub 2017 Oct 10.
60 Roseburia intestinalis supernatant ameliorates colitis induced in mice by regulating the immune response. Mol Med Rep. 2019 Aug;20(2):1007-1016. doi: 10.3892/mmr.2019.10327. Epub 2019 Jun 4.
61 Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 2019 Jul;78(7):947-956. doi: 10.1136/annrheumdis-2018-214856. Epub 2019 Feb 19.
62 Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS One. 2011 Apr 4;6(4):e18573. doi: 10.1371/journal.pone.0018573.
63 New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect. 2011 Apr;17(4):502-12. doi: 10.1111/j.1469-0691.2011.03460.x.
64 Intranasal immunization with recombinant outer membrane protein A induces protective immune response against Stenotrophomonas maltophilia infection. PLoS One. 2019 Apr 1;14(4):e0214596. doi: 10.1371/journal.pone.0214596. eCollection 2019.
65 Cooperativity between Stenotrophomonas maltophilia and Pseudomonas aeruginosa during Polymicrobial Airway Infections. Infect Immun. 2020 Mar 23;88(4):e00855-19. doi: 10.1128/IAI.00855-19. Print 2020 Mar 23.
66 Streptococcus cristatus attenuates Fusobacterium nucleatum-induced cytokine expression by influencing pathways converging on nuclear factor-B. Mol Oral Microbiol. 2011 Apr;26(2):150-63. doi: 10.1111/j.2041-1014.2010.00600.x. Epub 2011 Jan 27.
67 Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem Biophys Res Commun. 2018 Dec 2;506(4):907-911. doi: 10.1016/j.bbrc.2018.10.136. Epub 2018 Nov 2.
68 Synergistic BM-DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor. Mol Immunol. 2009 May;46(8-9):1883-91. doi: 10.1016/j.molimm.2009.02.008. Epub 2009 Mar 10.
69 Effects of Pseudomonas aeruginosa and Streptococcus mitis mixed infection on TLR4-mediated immune response in acute pneumonia mouse model. BMC Microbiol. 2017 Apr 4;17(1):82. doi: 10.1186/s12866-017-0999-1.
70 Innate immune response to Streptococcus pyogenes depends on the combined activation of TLR13 and TLR2. PLoS One. 2015 Mar 10;10(3):e0119727. doi: 10.1371/journal.pone.0119727. eCollection 2015.
71 Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS One. 2020 Feb 11;15(2):e0228531. doi: 10.1371/journal.pone.0228531. eCollection 2020.
72 Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genomics. 2009 Nov 19;10:542. doi: 10.1186/1471-2164-10-542.
73 The role of Tannerella forsythia and Porphyromonas gingivalis in pathogenesis of esophageal cancer. Infect Agent Cancer. 2019 Jan 30;14:3. doi: 10.1186/s13027-019-0220-2. eCollection 2019.
74 Activation of the Innate Immune System by Treponema denticola Periplasmic Flagella through Toll-Like Receptor 2. Infect Immun. 2017 Dec 19;86(1):e00573-17. doi: 10.1128/IAI.00573-17. Print 2018 Jan.
75 Upregulation of intercellular adhesion molecule 1 and proinflammatory cytokines by the major surface proteins of Treponema maltophilum and Treponema lecithinolyticum, the phylogenetic group IV oral spirochetes associated with periodontitis and endodontic infections. Infect Immun. 2005 Jan;73(1):268-76. doi: 10.1128/IAI.73.1.268-276.2005.
76 Quorum-sensing molecules N-acyl homoserine lactones inhibit Trueperella pyogenes infection in mouse model. Vet Microbiol. 2018 Jan;213:89-94. doi: 10.1016/j.vetmic.2017.11.029. Epub 2017 Nov 22.
77 Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide. Clin Vaccine Immunol. 2009 Dec;16(12):1804-9. doi: 10.1128/CVI.00310-09. Epub 2009 Oct 14.
78 Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Sci Rep. 2019 Sep 3;9(1):12674. doi: 10.1038/s41598-019-49081-5.
79 Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression. Infect Immun. 1995 Apr;63(4):1270-7.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.