General Information of HIF (ID: HIFM0226)
HIF Name
Tumor necrosis factor
HIF Synonym(s)
tumor necrosis factor a (TNF superfamily,member 2), tnfa
HIF Classification
Cytokine (Cyt)
Molecular Function
Cytokine
Description TNF- is a cytokine that is produced by macrophages, monocytes, endothelial cells, neutrophils, smooth muscle cells, activated lymphocytes, astrocytes, and adipocytes. TNF- has a variety of functions, such as mediating expression of genes for growth factors, cytokines, transcription factors, and receptors. [1]
Pfam TNF(Tumour Necrosis Factor) family (PF00229 )
Pathway AGE-RAGE signaling pathway in diabetic complications (hsa04933 )
Adipocytokine signaling pathway (hsa04920 )
African trypanosomiasis (hsa05143 )
Allograft rejection (hsa05330 )
Alzheimer disease (hsa05010 )
Amoebiasis (hsa05146 )
Amyotrophic lateral sclerosis (ALS) (hsa05014 )
Antifolate resistance (hsa01523 )
Antigen processing and presentation (hsa04612 )
Apoptosis (hsa04210 )
Asthma (hsa05310 )
C-type lectin receptor signaling pathway (hsa04625 )
Chagas disease (American trypanosomiasis) (hsa05142 )
Cytokine-cytokine receptor interaction (hsa04060 )
Dilated cardiomyopathy (DCM) (hsa05414 )
Epstein-Barr virus infection (hsa05169 )
Fc epsilon RI signaling pathway (hsa04664 )
Fluid shear stress and atherosclerosis (hsa05418 )
Graft-versus-host disease (hsa05332 )
Hematopoietic cell lineage (hsa04640 )
Hepatitis B (hsa05161 )
Hepatitis C (hsa05160 )
Herpes simplex virus 1 infection (hsa05168 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Human cytomegalovirus infection (hsa05163 )
Human immunodeficiency virus 1 infection (hsa05170 )
Human papillomavirus infection (hsa05165 )
Hypertrophic cardiomyopathy (HCM) (hsa05410 )
IL-17 signaling pathway (hsa04657 )
Inflammatory bowel disease (IBD) (hsa05321 )
Influenza A (hsa05164 )
Insulin resistance (hsa04931 )
Legionellosis (hsa05134 )
Leishmaniasis (hsa05140 )
MAPK signaling pathway (hsa04010 )
Malaria (hsa05144 )
NF-kappa B signaling pathway (hsa04064 )
NOD-like receptor signaling pathway (hsa04621 )
Natural killer cell mediated cytotoxicity (hsa04650 )
Necroptosis (hsa04217 )
Non-alcoholic fatty liver disease (NAFLD) (hsa04932 )
Osteoclast differentiation (hsa04380 )
Pathogenic Escherichia coli infection (hsa05130 )
Pertussis (hsa05133 )
Proteoglycans in cancer (hsa05205 )
RIG-I-like receptor signaling pathway (hsa04622 )
Rheumatoid arthritis (hsa05323 )
Salmonella infection (hsa05132 )
Shigellosis (hsa05131 )
Sphingolipid signaling pathway (hsa04071 )
Systemic lupus erythematosus (hsa05322 )
T cell receptor signaling pathway (hsa04660 )
TGF-beta signaling pathway (hsa04350 )
TNF signaling pathway (hsa04668 )
Toll-like receptor signaling pathway (hsa04620 )
Toxoplasmosis (hsa05145 )
Tuberculosis (hsa05152 )
Type I diabetes mellitus (hsa04940 )
Type II diabetes mellitus (hsa04930 )
Viral protein interaction with cytokine and cytokine receptor (hsa04061 )
Yersinia infection (hsa05135 )
mTOR signaling pathway (hsa04150 )
Sequence Click here to download the HIF sequence in FASTA format
External Links
Uniprot ID
TNFA_HUMAN
Microbe Species (MIC) Regulated by This HIF
         Acidobacteria (bacteria) MIC00011
             Description Acidobacteria was associated with TNF-Gamma. [2]
         Actinobacteria (actinobacteria) MIC00025
             Description At the phylum level, Actinobacteria is associated with TNF-Alpha. [3]
         Aeromonas hydrophila (gamma-proteobacteria) MIC00046
             Description The transcriptional levels of TLR2 (Toll like receptor 2), myeloid differentiation factor 88 (MyD88), Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), interleukin-1Beta (IL-1Beta) and tumor necrosis factor-Alpha1 (TNF-Alpha1) in spleen and kidney significantly increased post the Aeromonas hydrophila challenge compared to the pre challenge. [4]
         Aggregatibacter aphrophilus (gamma-proteobacteria) MIC00052
             Description Aggregatibacter is associated with the level of TNF-Alpha. [5]
         Akkermansia muciniphila (verrucomicrobia) MIC00056
             Description Akkermansia muciniphila could decrease TNF-Alpha. [6]
         Alistipes finegoldii (CFB bacteria) MIC00064
             Description Alistipes abundance was negatively correlated with TNF-alpha. [7]
         Bacillus licheniformis (firmicutes) MIC00132
             Description Bacillus licheniformis is associated with the tumour necrosis factor-alpha. [8]
         Bacillus subtilis (firmicutes) MIC00136
             Description Bacillus subtilis is associated with the tumour necrosis factor-alpha. [8]
         Bacteroides sp. (CFB bacteria) MIC00176
             Description The abundance of Bacteroidaceae was associated with the level of TNF-Alpha. [9]
         Bifidobacterium bifidum (actinobacteria) MIC00209
             Description Bifidobacterium bifidum WBIN03 could downregulate the pro-inflammatory cytokines (e.g., TNF-Alpha) and upregulate antioxidant factors (e.g., SOD1, SOD2, GPX2) at the transcriptional level. [10]
         Bifidobacterium longum (actinobacteria) MIC00232
             Description Bifidobacterium longum is the highest inducer of IL-10 and the lowest TNF-Alpha stimulus. [11]
         Bifidobacterium pseudolongum (actinobacteria) MIC00220
             Description Stimulation of DC and macrophage lines with Bifidobacterium pseudolongum induced lesser amounts of the proinflammatory cytokines TNFAlpha and IL-6. [12]
         Borrelia recurrentis (spirochaetes) MIC00255
             Description The abundance of Borrelia recurrentis is associated with TNF. [13]
         Borrelia turicatae (spirochaetes) MIC00256
             Description Borrelia turicatae elicits from peripheral blood cells key inflammatory response mediators (interleukin-1Beta and tumor necrosis factor alpha), which are associated with preterm abortion. [14]
         Brucella suis (alpha-proteobacteria) MIC00275
             Description This impairment of Brucella suis multiplication is due to both soluble factors released from activated gammadeltaT-cells (including TNF-alpha and IFN-gamma) and to a contact-dependent cytotoxicity directed against the infected cells. [15]
         Burkholderia cenocepacia (beta-proteobacteria) MIC00280
             Description Burkholderia cenocepacia could increase the expression of TNF-Alpha. [16]
         Burkholderia pseudomallei (beta-proteobacteria) MIC00287
             Description Increased expression of proinflammatory cytokines TNF-alpha was confined primarily to the area with the pathogen Burkholderia pseudomallei within pyogranulomatous lesions. [17]
         Butyricicoccus pullicaecorum (firmicutes) MIC00293
             Description Butyricicoccus pullicaecorum could decrease the level of tumour necrosis factor Alpha(TNFAlpha). [18]
         Campylobacter coli (epsilon-proteobacteria) MIC00301
             Description At the genus level, Campylobacter is associated with TNF. [19]
         Campylobacter jejuni (epsilon-proteobacteria) MIC00307
             Description Campylobacter jejuni infection with either strain resulted in elevated colonic IL-6, TNF and IFN-Gamma secretion. [20]
         Chlamydia pneumoniae (chlamydias) MIC00350
             Description Chlamydophila pneumoniae could increase the level of TNF-Alpha. [21]
         Chlorobi (chlorobi) MIC00351
             Description Chlorobi was associated with TNF-Gamma. [2]
         Clostridioides difficile (firmicutes) MIC00396
             Description The surface layer proteins(SLPs) among Clostridium difficile could induce the production of the proinflammatory TNF-alpha. [22]
         Clostridium sp. (firmicutes) MIC00418
             Description Clostridium was associated with TNF-alpha. [23]
         Cronobacter sakazakii (enterobacteria) MIC00469
             Description #N/A [24]
         Cyanobacteria (cyanobacteria) MIC00475
             Description At the phylum level, Cyanobacteria is associated with tnF-Alpha. [25]
         Desulfovibrio sp. (delta-proteobacteria) MIC00493
             Description Desulfovibrio was associated with the level of TNF-alpha. [26]
         Enterococcus durans (firmicutes) MIC00547
             Description The effect of Enterococcus durans EP1 administration on ileum gene expression: a decrease in mRNA amounts of the proinflammatory molecules IL6, IL1b, IL12p70, and tnf-alpha after 7 days. [27]
         Eubacterium limosum (firmicutes) MIC00576
             Description The abundance of Eubacterium limosum is associated with TNF-Alpha. [28]
         Faecalibacterium prausnitzii (firmicutes) MIC00590
             Description At the species level, Faecalibacterium prausnitzii is associated with TNF-Alpha. [29]
         Filifactor alocis (firmicutes) MIC00595
             Description Filifactor alocis could elicite a local inflammatory response along with an increase in levels of tumor necrosis factor (TNF). [30]
         Glaesserella parasuis (gamma-proteobacteria) MIC00654
             Description Challenged with highly virulent Haemophilus parasuis showed an increase proportion of CD163+ monocytes, which are able to produce high amounts of proinflammatory cytokines, such as TNF-, IL-1 and IL-6. [31]
         Helicobacter acinonychis (epsilon-proteobacteria) MIC00662
             Description Helicobacter acinonychis was associated with TNF-Alpha. [32]
         Klebsiella aerogenes (enterobacteria) MIC00530
             Description The abundance of Enterobacter aerogenes is associated with TNF. [33]
         Lachnospiraceae (firmicutes) MIC00695
             Description Lachnospiraceae was associated with TNF-alpha. [34]
         Lactobacillus acidophilus (firmicutes) MIC00702
             Description The expression of TNF-Alpha in intestinal epithelial cells during Salmonella Typhimurium challenge was decreased by Lactobacillus acidophilus alone or combined with immune active longchain inulin. [35]
         Lactobacillus casei (firmicutes) MIC00707
             Description The cytokines TNF-Alpha expression was associated with the abundance of Lactobacillus casei. [36]
         Lactobacillus crispatus (firmicutes) MIC00710
             Description Lactobacillus crispatus and its supernatant reduced IL-6, IL-8 and TNF-Alpha production in Chlamydia trachomatis-infected HeLa and J774 cells. [37]
         Lactobacillus farciminis (firmicutes) MIC00713
             Description The abundance of Lactobacillus farciminis is associated with TNF-Alpha. [38]
         Lactobacillus gasseri (firmicutes) MIC00716
             Description Lactobacillus gasseri could decrease the production of TNF-Alpha. [39]
         Lactobacillus helveticus (firmicutes) MIC01410
             Description Nevertheless, all three strains Lactobacillus paracasei OFS 0291, Lactobacillus helveticus OFS 1515 andLactobacillus fermentum DR9 alleviated proinflammatory cytokines TNF-Alpha, IFN-Gamma and IL-1Beta as well as IL-4, the Thelper (Th) 2 cell promoter in the gut. [40]
         Lactobacillus kefiranofaciens (firmicutes) MIC00723
             Description the abundance of Lactobacillus kefiranofaciens may be associated with TNFAlpha. [41]
         Lactobacillus paracasei (firmicutes) MIC00726
             Description Nevertheless, all three strains Lactobacillus paracasei OFS 0291, Lactobacillus helveticus OFS 1515 andLactobacillus fermentum DR9 alleviated proinflammatory cytokines TNF-Alpha, IFN-Gamma and IL-1Beta as well as IL-4, the Thelper (Th) 2 cell promoter in the gut. [40]
         Lactobacillus plantarum (firmicutes) MIC00730
             Description Lactobacillus plantarum could upregulate the mRNA expression of proinflammatory cytokines TNF-Alpha. [42]
         Lactobacillus reuteri (firmicutes) MIC00731
             Description Lactobacillus reuteri treatment also decreased the serum levels of the inflammatory cytokines KC, TNF-Alpha, IFN-Gamma, and IL-6 in the DSS colitis mice. [43]
         Lactobacillus salivarius (firmicutes) MIC00735
             Description Lactobacillus salivarius AR809 diminished proinflammatory activity by enhancing the production of IL10 and inhibiting the expression of tumor necrosis factor-Alpha, IL1B, inducible nitric oxide synthase, and RELA. [44]
         Leptospira borgpetersenii (spirochaetes) MIC00758
             Description The abundance of Leptospira borgpetersenii is associated with TNF-Alpha. [45]
         Listeria monocytogenes (firmicutes) MIC00771
             Description Lack of HDAC6 also decreased the relative mRNA levels of the pro-inflammatory cytokines TNFalpha, IL-1beta and IL12p40, indicating impaired cytokine activation after Listeria monocytogenes infection. [46]
         Methylorubrum extorquens (alpha-proteobacteria) MIC00814
             Description Methylobacterium was associated with TNF-Alpha. [47]
         Mucispirillum sp. (bacteria) MIC00841
             Description Mucispirillum is associated with the level of TNFAlpha. [48]
         Mycobacterium ulcerans (actinobacteria) MIC00852
             Description Mycobacterium marinum could induce increased production of TNF-Alpha expression. [49]
         Mycobacterium sp. (actinobacteria) MIC00855
             Description ML1899 conserved in all mycobacterium up-regulated TNF-alpha. [50]
         Mycobacteroides abscessus (actinobacteria) MIC00845
             Description Mycobacterium abscessus could induce TNF-Alpha production through TLR2 and myeloid differentiation 88 signaling pathways. [51]
         Mycoplasma genitalium (mycoplasmas) MIC00870
             Description Mollicutes is associated with the level of TNF-Alpha. [52]
         Mycoplasma hominis (mycoplasmas) MIC00871
             Description Mycoplasma hominis could stimulate the production of TNF-Alpha. [53]
         Mycoplasma pneumoniae (mycoplasmas) MIC00875
             Description Mycoplasma pneumoniae infection triggers secretion of several proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), IL-6, and, importantly, IL-1Beta. [54]
         Paenibacillus larvae (firmicutes) MIC00941
             Description The abundance of Paenibacillus is associated with TNF-Alpha. [55]
         Paeniclostridium sordellii (firmicutes) MIC00417
             Description Isolated human monocytes produced the pro-inflammatory cytokine TNFalpha and the immunoregulator IL-10 in response to Clostridium sordellii. [56]
         Parasutterella excrementihominis (beta-proteobacteria) MIC00963
             Description Parasutterella was associated with the level of TNF-alpha. [26]
         Pasteurella multocida (gamma-proteobacteria) MIC00967
             Description Pasteurella multocida LPS could induce the expression and the subsequent release of proinflammatory and immunomodulatory cytokines such as IL-1a, IL-6, TNF-alpha, IFN-gamma and IL-12 from a mix of murine splenocytes. [57]
         Phenylobacterium (alpha-proteobacteria) MIC00985
             Description Phenylobacterium elimination could upregulate TNF-Alpha levels. [58]
         Plesiomonas shigelloides (enterobacteria) MIC00994
             Description Plesiomonas shigelloides could induce the production of proinflammatory cytokines (TNF-Aloha, IL-1Beta, and IL-6). [59]
         Porphyromonas endodontalis (CFB bacteria) MIC00999
             Description Porphyromonas endodontalis total lipids were shown to promote TNF-Alpha secretion from RAW 264.7 cells. [60]
         Propionibacterium sp. (actinobacteria) MIC01030
             Description PJS(Propionibacterium freudenreicbii spp.sbermanii Js) could lowered intestinal immunoreactivity of TNF-alpha. [61]
         Pseudomonas sp. (gamma-proteobacteria) MIC01053
             Description Gene expression of pro-inflammatory cytokine TNF-1 was consistently and significantly induced by Pseudomonas plecoglossicida infection. [62]
         Rhizobium (alpha-proteobacteria) MIC01083
             Description The abundance of Rhizobium is associated with TNF-Alpha. [63]
         Rhodococcus hoagii (actinobacteria) MIC01092
             Description The abundance of Rhodococcus equi is associated with TNF-Alpha. [64]
         Rickettsia prowazekii (alpha-proteobacteria) MIC01108
             Description When BALB/c mice (n = 6 per experimental condition) were infected with 105 live Rickettsia prowazekii organisms, TNF and RANTES transcripts were significantly ( p < 0.05) increased in liver , lungs, and brain, at day 3 and decreased at day 6. [65]
         Rickettsia rickettsii (alpha-proteobacteria) MIC01109
             Description Significantly higher levels of IFN-gamma or TNF-alpha secreted by CD4+ T cells from Rickettsia rickettsii-infected mice were detected after immunization with GWP. [66]
         Roseburia faecis (firmicutes) MIC01116
             Description The mRNA expression levels of IL-1Beta, IL-10, IFN-Gamma, and TNF-Alpha negatively correlated (p < 0.05) with the abundance of OTU related to Roseburia faecis. [67]
         Rothia dentocariosa (actinobacteria) MIC01124
             Description Rothia dentocariosa could induce TNF-alpha production in a TLR2-dependent manner. [68]
         Saccharomyces cerevisiae (budding yeasts) MIC01145
             Description At the species level, Saccharomyces cerevisiae did not decrease significantly the mRNA expressions of TNF-, IL-1, IL-5 and CXCL12 which were up-regulated by ETEC. [69]
         Shigella sonnei (enterobacteria) MIC01183
             Description Shigella sonnei could reduce TNF-Alpha. [70]
         Spirochaetes (bacteria) MIC01204
             Description oral Spirochaetes could active TNF-Alpha production through TLR2MyD88 in macrophages. [71]
         Staphylococcus chromogenes (firmicutes) MIC01212
             Description At the species level, Staphylococcus chromogenes is associated with TNF-Alpha. [72]
         Stenotrophomonas maltophilia (gamma-proteobacteria) MIC01231
             Description Vaccination with rOmpA significantly reduced the levels of TNF-Alpha and IL-6 in BALF at 24 hours after respiratory Stenotrophomonas maltophilia challenge in mice. [73]
         Stenotrophomonas rhizophila (gamma-proteobacteria) MIC01232
             Description Stenotrophomonas maltophilia transiently colonizes the lung accompanied by significant weight loss and immune cell infiltration and the expression of tumor necrosis factor alpha (TNF-Alpha). [74]
         Streptococcus cristatus (firmicutes) MIC01246
             Description The RT-PCR confirmed the messenger RNA attenuation of IL-1Alpha, tumor necrosis factor-Alpha and IL-6 by Streptococcus cristatus. [75]
         Streptococcus gallolyticus (firmicutes) MIC01251
             Description Streptococcus gallolyticus could increase TNF-Alpha. [76]
         Streptococcus gordonii (firmicutes) MIC01252
             Description TNF could prime BM-DCs to better respond to Streptococcus gordonii, through a mechanism at least partially involving TLR-2 upregulation. [77]
         Streptococcus intermedius (firmicutes) MIC01255
             Description Streptococcus intermedius could stimulate and induce the production of proinflammatory cytokines (TNF-Alpha). [78]
         Streptococcus mitis (firmicutes) MIC01257
             Description In the PAO1 + Streptococcus mitis group, moderate inflammation, reduced IL-6 and TNF- protein levels, and decreased total cell counts were observed(p<0.05). [79]
         Streptococcus pyogenes (firmicutes) MIC01267
             Description Streptococcus pyogenes-induced production of inflammatory cytokines, including TNF and IL-6, by murine bone marrow-derived macrophages and conventional dendritic cells is entirely dependent on the signaling adaptor MyD88. [80]
         Streptococcus salivarius (firmicutes) MIC01268
             Description On HT-29 human IECs, the four live Streptococcus salivarius strains significantly could inhibited TNF-Alpha-induced NF-kappaB activation (ranging from 50% to 80%), while heat-killed bacteria did not. [81]
         Streptococcus sp. (firmicutes) MIC01276
             Description The different streptococci could induce varying levels of the cytokines TNF-Alpha. [82]
         Streptococcus uberis (firmicutes) MIC01274
             Description The gene of TNF could regulate (44.9 fold) after IMI challenge with Streptococcus uberis. [83]
         Subdoligranulum variabile (firmicutes) MIC01286
             Description The abundance of Subdoligranulum variabile is associated with TNF-Alpha. [84]
         Synergistetes (bacteria) MIC01297
             Description Synergistetes is evidently a minority phylum in human feces with an abundance of 0.01% and its negative correlation (p=0.658, p=0.011) to TNF-a may indicate an important anti-inflammatory factor in healthy population. [85]
         Tannerella forsythia (CFB bacteria) MIC01305
             Description The presence of alpha tumor necrosis factor alpha (TNF-Alpha) can be generated by Tannerella forsythia. [86]
         Treponema denticola (spirochetes) MIC01322
             Description Treponema denticola could stimulate the production of TNF-Alpha. [87]
         Treponema socranskii (spirochaetes) MIC01326
             Description The abundance of Treponema socranskii is associated with TNF-Alpha. [88]
         Trueperella pyogenes (actinobacteria) MIC01335
             Description Trueperella pyogenes is associated with TNF-Alpha. [89]
         Veillonella atypica (firmicutes) MIC01363
             Description Veillonellaceae abundance was associated with higher TNF-Alpha mRNA expression and serum insulin concentration. [90]
         Veillonella parvula (firmicutes) MIC01365
             Description Veillonella parvula lipopolysaccharide stimulated tumor necrosis factor alpha (TNF-Alpha) and interleukin-6 (IL-6) release in human peripheral blood mononuclear cells (PBMC) in a dose-dependent manner. [91]
         Yersinia enterocolitica (enterobacteria) MIC01398
             Description Yersinia enterocolitica could suppress of TNF-alpha production. [92]
         Yersinia pestis (enterobacteria) MIC01401
             Description Specific CD8 T cellmediated protection against pneumonic plague (caused by Yersinia pestis Infection) is dependent on TNFAlpha and IFNGamma, but not on perforin. [93]
References
1 TNF alpha and the TNF receptor superfamily: structure-function relationship(s).Microsc Res Tech. 2000 Aug 1;50(3):184-95. doi: 10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H.
2 Study on the correlation among dysbacteriosis, imbalance of cytokine and the formation of intrauterine adhesion. Ann Transl Med. 2020 Feb;8(4):52. doi: 10.21037/atm.2019.11.124.
3 Isolation, Diversity, and Antimicrobial and Immunomodulatory Activities of Endophytic Actinobacteria From Tea Cultivars Zijuan and Yunkang-10 (Camellia sinensis var. assamica). Front Microbiol. 2018 Jun 18;9:1304. doi: 10.3389/fmicb.2018.01304. eCollection 2018.
4 Replacement of fishmeal by spirulina Arthrospira platensis affects growth, immune related-gene expression in gibel carp (Carassius auratus gibelio var. CAS III), and its challenge against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2018 Aug;79:265-273. doi: 10.1016/j.fsi.2018.05.022. Epub 2018 May 26.
5 Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol. 2019 Oct;21(10):e13078. doi: 10.1111/cmi.13078. Epub 2019 Jul 17.
6 Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One. 2017 Mar 1;12(3):e0173004. doi: 10.1371/journal.pone.0173004. eCollection 2017.
7 Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol Res. 2019 Dec;150:104489. doi: 10.1016/j.phrs.2019.104489. Epub 2019 Nov 2.
8 Immunostimulatory activity of Bacillus spores. FEMS Immunol Med Microbiol. 2008 Jul;53(2):195-203. doi: 10.1111/j.1574-695X.2008.00415.x. Epub 2008 Apr 21.
9 Treatment with Subcritical Water-Hydrolyzed Citrus Pectin Ameliorated Cyclophosphamide-Induced Immunosuppression and Modulated Gut Microbiota Composition in ICR Mice. Molecules. 2020 Mar 12;25(6):1302. doi: 10.3390/molecules25061302.
10 Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress. Can J Microbiol. 2018 May;64(5):327-337. doi: 10.1139/cjm-2017-0716. Epub 2018 Feb 5.
11 Immunostimulatory effect of faecal Bifidobacterium species of breast-fed and formula-fed infants in a peripheral blood mononuclear cell/Caco-2 co-culture system. Br J Nutr. 2011 Oct;106(8):1216-23. doi: 10.1017/S0007114511001656. Epub 2011 May 31.
12 Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight. 2018 Oct 4;3(19):e121045. doi: 10.1172/jci.insight.121045.
13 Direct evidence for involvement of NF-kappaB in transcriptional activation of tumor necrosis factor by a spirochetal lipoprotein. Infect Immun. 2000 Sep;68(9):5447-9. doi: 10.1128/iai.68.9.5447-5449.2000.
14 Immunological Responses to the Relapsing Fever Spirochete Borrelia turicatae in Infected Rhesus Macaques: Implications for Pathogenesis and Diagnosis. Infect Immun. 2019 Mar 25;87(4):e00900-18. doi: 10.1128/IAI.00900-18. Print 2019 Apr.
15 The innate immune response against Brucella in humans. Vet Microbiol. 2002 Dec 20;90(1-4):383-94. doi: 10.1016/s0378-1135(02)00223-7.
16 Using dendritic cells to evaluate how Burkholderia cenocepacia clonal isolates from a chronically infected cystic fibrosis patient subvert immune functions. Med Microbiol Immunol. 2017 Apr;206(2):111-123. doi: 10.1007/s00430-016-0488-4. Epub 2016 Dec 16.
17 Dysregulation of TNF- and IFN- expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei. BMC Immunol. 2020 Feb 3;21(1):5. doi: 10.1186/s12865-020-0333-9.
18 Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 2013 Dec;62(12):1745-52. doi: 10.1136/gutjnl-2012-303611. Epub 2012 Dec 22.
19 Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev. 2016 Nov 1;40(6):938-960. doi: 10.1093/femsre/fuw025.
20 Protease Activity of Campylobacter jejuni HtrA Modulates Distinct Intestinal and Systemic Immune Responses in Infected Secondary Abiotic IL-10 Deficient Mice. Front Cell Infect Microbiol. 2019 Mar 29;9:79. doi: 10.3389/fcimb.2019.00079. eCollection 2019.
21 Chlamydia pneumoniae Infection and Inflammatory Diseases. For Immunopathol Dis Therap. 2016;7(3-4):237-254. doi: 10.1615/ForumImmunDisTher.2017020161.
22 A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer.J Hematol Oncol. 2013 Jan 4;6:1. doi: 10.1186/1756-8722-6-1.
23 Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015 Feb 3;5:8096. doi: 10.1038/srep08096.
24 Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response. Microb Pathog. 2016 Jan;90:55-63. doi: 10.1016/j.micpath.2015.11.014. Epub 2015 Nov 23.
25 Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins (Basel). 2019 Apr 11;11(4):218. doi: 10.3390/toxins11040218.
26 Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. Int J Biol Macromol. 2020 Jun 15;153:708-722. doi: 10.1016/j.ijbiomac.2020.03.053. Epub 2020 Mar 10.
27 Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate sIgA and to Increase Faecalibacterium prausnitzii Abundance. Front Immunol. 2017 Feb 10;8:88. doi: 10.3389/fimmu.2017.00088. eCollection 2017.
28 Eubacterium limosum ameliorates experimental colitis and metabolite of microbe attenuates colonic inflammatory action with increase of mucosal integrity. World J Gastroenterol. 2006 Feb 21;12(7):1071-7. doi: 10.3748/wjg.v12.i7.1071.
29 Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients. Front Microbiol. 2018 Jul 2;9:1451. doi: 10.3389/fmicb.2018.01451. eCollection 2018.
30 Filifactor alocis infection and inflammatory responses in the mouse subcutaneous chamber model. Infect Immun. 2014 Mar;82(3):1205-12. doi: 10.1128/IAI.01434-13. Epub 2013 Dec 30.
31 Haemophilus parasuis: infection, immunity and enrofloxacin. Vet Res. 2015 Oct 28;46:128. doi: 10.1186/s13567-015-0263-3.
32 Recombinant Bacillus subtilis Spores Elicit Th1/Th17-Polarized Immune Response in a Murine Model of Helicobacter pylori Vaccination. Mol Biotechnol. 2015 Aug;57(8):685-91. doi: 10.1007/s12033-015-9859-0.
33 Immunological cross-reactivity between Enterobacter aerogenes and Klebsiella capsular polysaccharides. Microb Pathog. 1990 Aug;9(2):127-30. doi: 10.1016/0882-4010(90)90086-6.
34 Gut Mucosal and Fecal Microbiota Profiling Combined to Intestinal Immune System in Neonates Affected by Intestinal Ischemic Injuries. Front Cell Infect Microbiol. 2020 Feb 25;10:59. doi: 10.3389/fcimb.2020.00059. eCollection 2020.
35 Synbiotic Effects of the Dietary Fiber Long-Chain Inulin and Probiotic Lactobacillus acidophilus W37 Can be Caused by Direct, Synergistic Stimulation of Immune Toll-Like Receptors and Dendritic Cells. Mol Nutr Food Res. 2018 Jun 14;62(15):e1800251. doi: 10.1002/mnfr.201800251. Online ahead of print.
36 The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific. PLoS One. 2016 May 31;11(5):e0156374. doi: 10.1371/journal.pone.0156374. eCollection 2016.
37 Lactobacillus crispatus mediates anti-inflammatory cytokine interleukin-10 induction in response to Chlamydia trachomatis infection in vitro. Int J Med Microbiol. 2015 Dec;305(8):815-27. doi: 10.1016/j.ijmm.2015.07.005. Epub 2015 Sep 5.
38 Zymomonas mobilis culture protects against sepsis by modulating the inflammatory response, alleviating bacterial burden and suppressing splenocyte apoptosis. Eur J Pharm Sci. 2013 Jan 23;48(1-2):1-8. doi: 10.1016/j.ejps.2012.10.011. Epub 2012 Nov 2.
39 Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe. 2017 Oct;47:137-144. doi: 10.1016/j.anaerobe.2017.05.013. Epub 2017 May 26.
40 Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacol Res. 2019 Aug;146:104312. doi: 10.1016/j.phrs.2019.104312. Epub 2019 Jun 14.
41 Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 2006 Dec;36(5-6):254-60. doi: 10.1016/j.cyto.2007.01.003. Epub 2007 Mar 23.
42 Short communication: Complete genome sequence of Lactobacillus plantarum J26, a probiotic strain with immunomodulatory activity. J Dairy Sci. 2019 Dec;102(12):10838-10844. doi: 10.3168/jds.2019-16593. Epub 2019 Sep 20.
43 Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells. Front Immunol. 2019 Jun 4;10:1235. doi: 10.3389/fimmu.2019.01235. eCollection 2019.
44 Adhesion to pharyngeal epithelium and modulation of immune response: Lactobacillus salivarius AR809, a potential probiotic strain isolated from the human oral cavity. J Dairy Sci. 2019 Aug;102(8):6738-6749. doi: 10.3168/jds.2018-16117. Epub 2019 Jun 6.
45 Evaluation of type 1 immune response in naive and vaccinated animals following challenge with Leptospira borgpetersenii serovar Hardjo: involvement of WC1(+) gammadelta and CD4 T cells. Infect Immun. 2002 Nov;70(11):6147-57. doi: 10.1128/iai.70.11.6147-6157.2002.
46 HDAC6 controls innate immune and autophagy responses to TLR-mediated signalling by the intracellular bacteria Listeria monocytogenes. PLoS Pathog. 2017 Dec 27;13(12):e1006799. doi: 10.1371/journal.ppat.1006799. eCollection 2017 Dec.
47 Bacteria in the adventitia of cardiovascular disease patients with and without rheumatoid arthritis. PLoS One. 2014 May 29;9(5):e98627. doi: 10.1371/journal.pone.0098627. eCollection 2014.
48 Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease. J Neuroinflammation. 2019 Jun 27;16(1):129. doi: 10.1186/s12974-019-1528-y.
49 Mycobacterium marinum: a potential immunotherapy for Mycobacterium tuberculosis infection. Drug Des Devel Ther. 2013 Jul 29;7:669-80. doi: 10.2147/DDDT.S45197. Print 2013.
50 Molecular characterization and immunogenic function of ML1899 (LipG) of Mycobacterium leprae. J Med Microbiol. 2019 Nov;68(11):1629-1640. doi: 10.1099/jmm.0.001080.
51 Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease. Am J Respir Cell Mol Biol. 2010 Oct;43(4):387-93. doi: 10.1165/rcmb.2009-0276TR. Epub 2010 Jan 15.
52 Mycoplasma genitalium can modulate the local immune response in patients with endometriosis. Fertil Steril. 2018 Mar;109(3):549-560.e4. doi: 10.1016/j.fertnstert.2017.11.009. Epub 2018 Feb 7.
53 Interaction of Mycoplasma hominis PG21 with Human Dendritic Cells: Interleukin-23-Inducing Mycoplasmal Lipoproteins and Inflammasome Activation of the Cell. J Bacteriol. 2017 Jul 11;199(15):e00213-17. doi: 10.1128/JB.00213-17. Print 2017 Aug 1.
54 NLRP3 Is a Critical Regulator of Inflammation and Innate Immune Cell Response during Mycoplasma pneumoniae Infection. Infect Immun. 2017 Dec 19;86(1):e00548-17. doi: 10.1128/IAI.00548-17. Print 2018 Jan.
55 Immunomodulatory activity of exopolysaccharide from the rhizobacterium Paenibacillus polymyxa CCM 1465. Arch Microbiol. 2018 Dec;200(10):1471-1480. doi: 10.1007/s00203-018-1564-5. Epub 2018 Aug 28.
56 Innate immune recognition of, and response to, Clostridium sordellii. Anaerobe. 2010 Apr;16(2):125-30. doi: 10.1016/j.anaerobe.2009.06.004. Epub 2009 Jun 25.
57 Pasteurella multocida and immune cells. Curr Top Microbiol Immunol. 2012;361:53-72. doi: 10.1007/82_2012_204.
58 Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog. 2013 Aug 30;5(1):26. doi: 10.1186/1757-4749-5-26.
59 Structure-Activity Relationship of Plesiomonas shigelloides Lipid A to the Production of TNF-, IL-1, and IL-6 by Human and Murine Macrophages. Front Immunol. 2017 Dec 11;8:1741. doi: 10.3389/fimmu.2017.01741. eCollection 2017.
60 Biologic activity of porphyromonas endodontalis complex lipids. J Endod. 2014 Sep;40(9):1342-8. doi: 10.1016/j.joen.2014.02.017. Epub 2014 Apr 13.
61 Effects of probiotic Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a high-fat diet. Br J Nutr. 2013 Jul 14;110(1):77-85. doi: 10.1017/S0007114512004801. Epub 2012 Dec 5.
62 Immune and gut bacterial successions of large yellow croaker (Larimichthys crocea) during Pseudomonas plecoglossicida infection. Fish Shellfish Immunol. 2020 Apr;99:176-183. doi: 10.1016/j.fsi.2020.01.063. Epub 2020 Feb 1.
63 Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell Microbiol. 2006 Mar;8(3):401-13. doi: 10.1111/j.1462-5822.2005.00629.x.
64 Effects of age and macrophage lineage on intracellular survival and cytokine induction after infection with Rhodococcus equi. Vet Immunol Immunopathol. 2014 Jul 15;160(1-2):41-50. doi: 10.1016/j.vetimm.2014.03.010. Epub 2014 Mar 29.
65 A murine model of infection with Rickettsia prowazekii: implications for pathogenesis of epidemic typhus. Microbes Infect. 2007 Jun;9(7):898-906. doi: 10.1016/j.micinf.2007.03.008. Epub 2007 Mar 21.
66 Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine. 2017 Dec 18;35(51):7204-7212. doi: 10.1016/j.vaccine.2017.09.068. Epub 2017 Oct 10.
67 Effects of Intranasal Pseudorabies Virus AH02LA Infection on Microbial Community and Immune Status in the Ileum and Colon of Piglets. Viruses. 2019 Jun 5;11(6):518. doi: 10.3390/v11060518.
68 Rothia dentocariosa induces TNF-alpha production in a TLR2-dependent manner. Pathog Dis. 2014 Jun;71(1):65-8. doi: 10.1111/2049-632X.12115. Epub 2013 Dec 16.
69 Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS One. 2011 Apr 4;6(4):e18573. doi: 10.1371/journal.pone.0018573.
70 The anti-apoptotic and anti-inflammatory effect of Lactobacillus acidophilus on Shigella sonnei and Vibrio cholerae interaction with intestinal epithelial cells: A comparison between invasive and non-invasive bacteria. PLoS One. 2018 Jun 6;13(6):e0196941. doi: 10.1371/journal.pone.0196941. eCollection 2018.
71 New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect. 2011 Apr;17(4):502-12. doi: 10.1111/j.1469-0691.2011.03460.x.
72 A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain. PLoS One. 2017 Sep 5;12(9):e0184218. doi: 10.1371/journal.pone.0184218. eCollection 2017.
73 Intranasal immunization with recombinant outer membrane protein A induces protective immune response against Stenotrophomonas maltophilia infection. PLoS One. 2019 Apr 1;14(4):e0214596. doi: 10.1371/journal.pone.0214596. eCollection 2019.
74 Cooperativity between Stenotrophomonas maltophilia and Pseudomonas aeruginosa during Polymicrobial Airway Infections. Infect Immun. 2020 Mar 23;88(4):e00855-19. doi: 10.1128/IAI.00855-19. Print 2020 Mar 23.
75 Streptococcus cristatus attenuates Fusobacterium nucleatum-induced cytokine expression by influencing pathways converging on nuclear factor-B. Mol Oral Microbiol. 2011 Apr;26(2):150-63. doi: 10.1111/j.2041-1014.2010.00600.x. Epub 2011 Jan 27.
76 Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem Biophys Res Commun. 2018 Dec 2;506(4):907-911. doi: 10.1016/j.bbrc.2018.10.136. Epub 2018 Nov 2.
77 Synergistic BM-DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor. Mol Immunol. 2009 May;46(8-9):1883-91. doi: 10.1016/j.molimm.2009.02.008. Epub 2009 Mar 10.
78 Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways. Cell Microbiol. 2008 Jan;10(1):262-76. doi: 10.1111/j.1462-5822.2007.01040.x. Epub 2007 Sep 20.
79 Effects of Pseudomonas aeruginosa and Streptococcus mitis mixed infection on TLR4-mediated immune response in acute pneumonia mouse model. BMC Microbiol. 2017 Apr 4;17(1):82. doi: 10.1186/s12866-017-0999-1.
80 Innate immune response to Streptococcus pyogenes depends on the combined activation of TLR13 and TLR2. PLoS One. 2015 Mar 10;10(3):e0119727. doi: 10.1371/journal.pone.0119727. eCollection 2015.
81 Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014 Feb;80(3):928-34. doi: 10.1128/AEM.03133-13. Epub 2013 Nov 22.
82 Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS One. 2014 Dec 5;9(12):e114277. doi: 10.1371/journal.pone.0114277. eCollection 2014.
83 Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genomics. 2009 Nov 19;10:542. doi: 10.1186/1471-2164-10-542.
84 Cytokine Response after Stimulation with Key Commensal Bacteria Differ in Post-Infectious Irritable Bowel Syndrome (PI-IBS) Patients Compared to Healthy Controls. PLoS One. 2015 Sep 14;10(9):e0134836. doi: 10.1371/journal.pone.0134836. eCollection 2015.
85 Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF- and short-chain fatty acids. Clin Nutr. 2019 Jun;38(3):1373-1381. doi: 10.1016/j.clnu.2018.06.931. Epub 2018 Jun 18.
86 The role of Tannerella forsythia and Porphyromonas gingivalis in pathogenesis of esophageal cancer. Infect Agent Cancer. 2019 Jan 30;14:3. doi: 10.1186/s13027-019-0220-2. eCollection 2019.
87 Activation of the Innate Immune System by Treponema denticola Periplasmic Flagella through Toll-Like Receptor 2. Infect Immun. 2017 Dec 19;86(1):e00573-17. doi: 10.1128/IAI.00573-17. Print 2018 Jan.
88 Phenol/water extract of Treponema socranskii subsp. socranskii as an antagonist of Toll-like receptor 4 signalling. Microbiology. 2006 Feb;152(Pt 2):535-546. doi: 10.1099/mic.0.28470-0.
89 Quorum-sensing molecules N-acyl homoserine lactones inhibit Trueperella pyogenes infection in mouse model. Vet Microbiol. 2018 Jan;213:89-94. doi: 10.1016/j.vetmic.2017.11.029. Epub 2017 Nov 22.
90 TRIM31 Deficiency Is Associated with Impaired Glucose Metabolism and Disrupted Gut Microbiota in Mice. Front Physiol. 2018 Feb 15;9:24. doi: 10.3389/fphys.2018.00024. eCollection 2018.
91 Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide. Clin Vaccine Immunol. 2009 Dec;16(12):1804-9. doi: 10.1128/CVI.00310-09. Epub 2009 Oct 14.
92 Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression. Infect Immun. 1995 Apr;63(4):1270-7.
93 Immunology of Yersinia pestis Infection. Adv Exp Med Biol. 2016;918:273-292. doi: 10.1007/978-94-024-0890-4_10.

If you find any error in data or bug in web service, please kindly report it to Dr. Tang and Dr. Mou.